Course Schedule (Tentative)

Lecture Date Topic Readings Notes
1 1/27 Course overview Lecture 1
Supervised Learning
2 Linear Regression (Part 1) UML 9.2
ESL 3.2
Lecture 2
3 2/3 Linear Regression (Part 2) UML 11.2
ESL 3.4, 7.10
Lecture 3
4 Linear Classification
Gradient Descent
UML 12
ESL 4.1-4.2, 4.4
Lecture 4
5 2/10 Logistic Regression UML 9.3 Lecture 5
6 Support Vector Machine (Part 1)
Lagrange Duality
UML 15
ESL 12.1-12.3
Lecture 6
Scribble 6
2/16 HW 1 Due
7 2/17 Support Vector Machine (Part 2) ESL 12.1-12.3
UML 15
Lecture 7
8 Kernels ESL 5.8, 6.3, 6.7
UML 16, 20
Lecture 8
Scribble 8
9 2/24 Neural Networks (Part 1) DL Book 6 Lecture 9
10 Neural Networks (Part 2) DL Book 8 Lecture 10
3/1 HW 2 Due
Learning Theory
11 3/2 Neural Networks (Part 3)
Convolutional Neural Networks
DL Book 8 Lecture 11
12 Learning Theory (Part 1) Lecture 12
3/9
Spring Break
Course moving online due to COVID-19
13 Learninig Theory (Part 2) UML 4, 6 Lecture 13
14 Learninig Theory (Part 3) UML 4, 6, 26 Lecture 14
3/29 HW 3 Due
Ensemble methods
15 AdaBoost (Part 1)
Decision Trees
Boosting Book 3, 5
UML 10.2, 18
Lecture 15
16 AdaBoost (Part 2) Boosting Book 3, 5 Lecture 16
17 Gradient Boosting ESL 10.9 10.10 Lecture 17
18 Bagging
Random Forest
ESL 15 Lecture 18
4/15 HW 4 Due
Unsupervised Learning
19 PCA ESL 14.5 Lecture 19
20 Kernel PCA
Maximum Likelihood Estimation
ESL 14.5 Lecture 20
21 Gaussian Mixture Model
Expectation-Maximization
ESL 8.5 Lecture 21
22-23 Variational Autoencoder Lecture 22-23
24 Generative Adversarial Nets Lecture 24
Interactive Learning
25 Online Learning (Part 1)
Halving and Percepron
Lecture 25
26 Online Learning (Part 2)
Multiplicative Weights (MW)
Note by J.K.
5/4 HW 5 Due
5/8
Takehome Due