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A curious manager
Suppose you work at a restaurant and you want to predict how much the customers tip. Let’s say
the restaurant is not very busy, and as a manager you have all the free time to record the following
kind of data:

Figure 1: A snapshot of the dataset "Gopher Express"

Perhaps the simplest prediction you could make is to predict every tip amount based on the
mean estimate µ̂ = 2.99. Can you do better? Well, you figure that you figure that customers
often tip based on the size of the meals they had, so you decide to take advantage of this side
information. Now you remember your first lecture in machine learning 5525 and realize that this
is just a supervised learning problem: you are given data (X1, Y1), . . . , (Xn, Yn) are drawn i.i.d.
from the underlying distribution, and the range of X , denoted X and the range of Y , denoted Y
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are both R. Now you would like to find a predictor/prediction function f̂ : X → Y , so that in the
future whenever you observe some new X , you can form a prediction f̂(X).

1 Linear regression
Let’s use a linear model to predict Y with an affine function:

f̂(X) = wᵀ

(
X
1

)
where w =

(
w1

w0

)
. Appending 1 makes this an affine function. To slightly abuse notation, we will

just write x to denote
(
x
1

)
, and view it as the input feature. More generally, x can be in Rd.

Figure 2: Fitting a affine function.

But which line should we choose?

2 ERM with Least Squares
Much of supervised learning follows the empirical risk minimization (ERM) approach. The general
recipe of ERM takes the following steps:
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• Pick a family of models/predictors F . (Linear models in this lecture.)

• Pick a loss function `.

• Minimize the empirical risk over the model or equivalently the parameters.

In the case of least squares regression:

• Loss function: the least square loss for prediction ŷ = f̂(x)

`(y, ŷ) = `(y, ŷ) = (y − ŷ)2

Sometimes we re-scale the loss by 1/2.

• Goal: minimize least squares empirical risk

R̂(f̂) = 1

n

n∑
i=1

`(yi, f̂(xi)) =
1

n

n∑
i=1

(yi − f̂(xi))2

• In other words, we find a w ∈ Rd (in the example d = 2) that minimizes R̂(w)

arg min
w∈Rd

1

n

n∑
i=1

(yi −wᵀxi)
2

We will see more examples like this, and will also learn about why ERM should work.

3 Least squares solution
Let’s do some linear algebra and think about matrix forms. We can define the design matrix:

A =

← xᵀ1 →
...

← xᵀn →


and response vector:

b =

y1...
yn


Then the empirical risk can be written as

R̂(w) = 1

n

n∑
i=1

(yi −wᵀxi)
2 =

1

n
‖Aw − b‖2
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Note that re-scaling the loss doesn’t change the solution, so the least squares solution is given by

ŵ ∈ arg min
w∈Rd

‖Aw − b‖2

From calculus, we learn that a necessary condition for w to be a minimizer of R̂ is that it needs
to be a stationery point of the (re-scaled) risk function:

∇R̂(w) = 0

This translates to the following condition

(AᵀA)w − Aᵀb = 0 or equivalently (AᵀA)w = Aᵀb (1)

Note the solutions may not be unique.

Claim 3.1. The condition in equation 1 is also a sufficient condition for optimality.

Proof. Let w be such that (AᵀA)w = Aᵀb and consider any w′. We will show that ‖Aw′−b‖ ≥
‖Aw − b‖. First, note that

‖Aw′ − b‖2 = ‖Aw′ − Aw + Aw − b‖2

= ‖Aw′ − Aw‖2 + 2(Aw′ − Aw)ᵀ(Aw − b) + ‖Aw − b‖2

Observe that

(Aw′ − Aw)ᵀ(Aw − b) = (w′ − w)ᵀAᵀ(Aw − b) = (w′ − w)ᵀ(AᵀAw − Aᵀb) = 0,

where the last equality follows from the condition in (1). It follows that

‖Aw′ − b‖2 = ‖Aw′ − Aw‖2︸ ︷︷ ︸
≥0

+‖Aw − b‖2

This means any w′ cannot have smaller loss.

We can also prove the claim above with convexity.
Now if we are lucky and the matrix AᵀA is invertible, then the least squares solution is simply

the following
w∗ = (AᵀA)−1(Aᵀb).

So how do we compute a solution for (1) when this matrix is not invertible?
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4 SVD and Pseudoinverse
We will first recall how singular value decomposition (SVD) works, and will present the thin
version of SVD. Given any matrix M ∈ Rm×n, we want to factorize the matrix as M = USV ᵀ,
where

• r is the rank of the matrix M ;

• U ∈ Rm×r is orthonormal, that is UᵀU = Ir;

• V ∈ Rn×r is orthonormal, that is V ᵀV = Ir;

• S ∈ Rr×r is a diagonal matrix diag(s1, . . . , sr).

We could also express the factorization as a sum

M =
r∑

i=1

siuiv
ᵀ
i

where each ui is a column vector for U and each vi is a column vector for V . Note that {ui} spans
the column space of M and {vi} spans the row space of M .

This allows us to define the (Moore-Penrose) pseudoinverse

M+ =
r∑

i=1

1

si
viu

ᵀ
i .

Basically, we take the inverse of the singular values and reverse the positions of the vi and ui within
each term.

Note that if M is the full-zero matrix, then M+ is also just all zeros.
Now let’s return to the problem of least squares regression, where would like to fine a solution

for (1). Now consider w∗ = A+b.

Claim 4.1. The vector w∗ satisfies (1).

Proof. We can derive the following:

AᵀAw =

(
r∑

i=1

siviu
ᵀ
i

)(
r∑

i=1

siuiv
ᵀ
i

)(
r∑

i=1

1

si
viu

ᵀ
i

)
b (2)

=

(
r∑

i=1

siviu
ᵀ
i

)(
r∑

i=1

uiv
ᵀ
i viu

ᵀ
i

)
b (3)

=

(
r∑

i=1

siviu
ᵀ
i

)(
r∑

i=1

uiu
ᵀ
i

)
b (4)

=

(
r∑

i=1

siviu
ᵀ
i

)
b (5)

= Aᵀb (6)
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where the (4) follows because vᵀi vj = 0 whenever i 6= j and vᵀi vi = 1, and (5) follows from the
fact that uᵀi uj = 0 whenever i 6= j and uᵀi ui = 1.
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