
CSCI 5525 Machine Learning Fall 2019

Lecture 3: Linear Regression (Part 2)
Feb 3rd 2020

Lecturer: Steven Wu Scribe: Steven Wu

Recall the problem of least squares regression with the design matrix and response vector
respectively:

A =

← xᵀ1 →
...

← xᵀn →

 b =

y1...
yn


We aim to solve the following ERM problem:

argmin
w
‖Aw − b‖22

We learn that w∗ = A+b is a solution since it satisfies the first-order condition:

(AᵀA)w = Aᵀb

This is sometimes called the normal equation. Note that if A is full rank, then

w∗ = A+b = (AᵀA)−1Aᵀb

which is the unique minimizer of the least squares objective.

1 A Statistical View
We often study linear regression under the following model assumption: yi = w>xi + εi where
εi ∼ N(0, σ2). In other words, the distribution of yi given xi is:

⇒ yi|xi ∼ N(w>xi, σ
2)⇒ P (yi|xi,w) =

1√
2πσ2

e−
(x>i w−yi)

2

2σ2

Consider the maximum likelihood estimation (MLE) procedure that aims to maximize

P (observed data | model paramter)

1

In more details:

w = argmax
w

P (y1, x1, ..., yn, xn|w)

= argmax
w

n∏
i=1

P (yi, xi|w) (Independence)

= argmax
w

n∏
i=1

P (yi|xi,w)P (xi|w) (Chain rule of probability)

= argmax
w

n∏
i=1

P (yi|xi,w)P (xi) (xi is independent of w)

= argmax
w

n∏
i=1

P (yi|xi,w) (P (xi) does not depend on w)

= argmax
w

n∑
i=1

log [P (yi|xi,w)] (log is a monotonic function)

= argmax
w

n∑
i=1

[
log

(
1√
2πσ2

)
+ log

(
e−

(x>i w−yi)
2

2σ2

)]
(Plugging in Gaussian distribution)

= argmax
w

− 1

2σ2

n∑
i=1

(x>i w − yi)2 (First term is a constant, and log(ez) = z)

= argmin
w

1

n

n∑
i=1

(x>i w − yi)2

Now consider a similar maximum a posteriori estimation (MAP) with a prior assumption:

P (w) =
1√
2πτ 2

e−
w>w
2τ2

The MAP estimation instead aims to solve

P (model parameter | observed data)

2

w = argmax
w

P (w|y1, x1, ..., yn, xn)

= argmax
w

P (y1, x1, ..., yn, xn|w)P (w)

P (y1, x1, ..., yn, xn)

= argmax
w

P (y1, x1, ..., yn, xn|w)P (w)

= argmax
w

[
n∏
i=1

P (yi, xi|w)

]
P (w)

= argmax
w

[
n∏
i=1

P (yi|xi,w)P (xi|w)

]
P (w)

= argmax
w

[
n∏
i=1

P (yi|xi,w)P (xi)

]
P (w)

= argmax
w

[
n∏
i=1

P (yi|xi,w)

]
P (w)

= argmax
w

n∑
i=1

logP (yi|xi,w) + logP (w)

= argmin
w

1

2σ2

n∑
i=1

(x>i w − yi)2 +
1

2τ 2
w>w

= argmin
w

1

n

n∑
i=1

(x>i w − yi)2 + λ||w||22 λ = σ2

nτ2

This actually corresponds to a regularized ERM problem called ridge regression.

2 Ridge Regression
Now consider following regularized ERM problem called ridge regression:

min
w
‖Aw − b‖22 + λ‖w‖22 (1)

Now let’s replace AᵀA by (AᵀA+ λI) in the ordinary least squares solution and obtain:

ŵ = (AᵀA+ λI)−1Aᵀb. (2)

Again, by first-order condition, we can show that ŵ is the the solution to (1). Note that the solution
is always unique even if A is not full rank (e.g., when n < d). The regularization or penalty term

3

λ‖w‖22 encourages “shorter” solutions w with smaller `2 norm. The paramter λmanages the trade-
off between fitting the data to minimize R̂ and shrinking the solution to minimize λ‖w‖22. Ridge
regression can also be formulated as a constrained optimization problem:

min
w
‖Aw − b‖22 such that ‖w‖ ≤ β.

Why do we care to make the weights w short or small? Intuively, larger w corresponds to
higher model complexity. By bounding the model complexity, we can prevent overfitting—that is
the model has small training error, but large test error. However, if we bound the norm of w to
aggressively (by setting λ to be very large), then we might run into the problem of underfitting—
that is the model has large training error and test error.

Lasso regression. Another common regularization is the Lasso regression that uses `1 penalty:

argmin
w
‖Aw − b‖22 + λ‖w‖1

Lasso encourages sparse solutions, and is commonly used when d is much greater than the number
of observations n. However, it does not admit a closed-form solution.

3 Feature Transformation
We can enrich linear regression models by transforming the features: first transform each feature
vector x into φ(x), and then predict by using linear function over the transformed features, that is
f̂(x) = wᵀφ(x). Consider the following examples of feature transformation:

• for x ∈ R, φ(x) = ln(1 + x)

• for x ∈ {0, 1}d, we can apply boolean functions such as

φ(x) = (x1 ∧ x2) ∨ (x3 ∨ x4)

• for x ∈ Rd, we can also apply polynomial expansion:

φ(x) = (1, x1, . . . , xd, x
2
1, . . . , x

2
d, x1x2, . . . , xd−1xd)

• for x ∈ R, we can also apply trigonometry expansion:

φ(x) = (1, sin(x), cos(x), sin(2x), cos(2x), . . .)

Can we just use complicated linear mapping though? No, we won’t gain anything: wᵀφ(x) is
just another linear function of x, when φ is also a linear mapping of x.

Feature engineering can get messy, and often requires a lot of domain knowledge. For example,
we probably should not use polynomial expansion for periodic data.

4

Figure 1: Examples shown in class. Fitting a linear function versus fitting a degree-3 polynomial.
(More details here.)

4 Hyperparameters, Validation Set, and Test Set
The parameter λ in ridge regression and Lasso regression, and the order of polynomials in polyno-
mial expansion, and also the paramter k in k-nearest neighbor are often called hyperparamters for
the machine learning algorithms, which requires tuning. How do we optimize these parameters?
A standard way is to perform the following three-way data splits:

• Training set: learn the predictor f̂ (e.g. weight vector w) by “fitting” this dataset.

• Validation set: a set of examples to tune the hyperparameters. We use the loss on this dataset
to find the “best” hyperparameter.

• Test set: we use this data to assess the risk of the final model:

R(f) = E
(X,Y)∼P

[`(Y, f(X))]

In the case of squared loss, this is

R(f) = E
(X,Y)∼P

[(f(X)− Y)2]

In general, we want to predict well on future instances, so the goal is formulated as finding
a predictor f̂ that minimizes the risk (instead of empirical risk on the training set).

What if we did not start with a validation set? We can always create a validation set from the
training set. One standard method is cross validation.

k-fold cross validation We split the training set into k parts or folds of roughly equal size:
F1, . . . , Fk. (Typically, k = 5 or 10, but it also depends on the size of your dataset.)

1. For j = 1, . . . , k:

• We will train on the union of folds F−j =
⋃
j′ 6=j Fj′ and validate on fold Fj

5

https://towardsdatascience.com/machine-learning-polynomial-regression-with-python-5328e4e8a386

• For each value of the tuning parameter θ ∈ {θ1, . . . , θm}, train on F−j to obtain predic-
tor f̂−jθ , and record the loss on the validation set R̂j(f̂

−j
θ)).

2. For each paramter θ, compute the average loss over all folds

R̂CV(θ) =
1

k

k∑
j=1

R̂j(f̂
−j
θ)

Then we will chose the parameter θ̂ that minimize R̂CV(θ).

6

	A Statistical View
	Ridge Regression
	Feature Transformation
	Hyperparameters, Validation Set, and Test Set

