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Now let’s study classification, where the label space Y is discrete. We will mostly focus on
binary classification, whereY = {±1}.1 We consider linear predictor f̂ parameterized by a weight
vector w ∈ Rd such that on each feature vector x ∈ Rd,

f̂(x) = sign(wᵀx)

A natural loss function is the 0-1 loss: `(y, ŷ) = 1[y 6= ŷ]. Given training data (x1, y1) . . . , (xn, yn),
the ERM problem is then defined as

arg min
w∈Rd

1

n

n∑
i=1

1[y 6= ŷ] (1)

First, is it always possible to minimize the empirical risk down to 0 (by perfectly matching all
of the labels in the data)? Well, it depends on whether the data points are linearly separable or not.

(a) Linearly Separable (b) Not linearly Separable

Figure 1: Illustration of linear separability from Wikipedia.

Feature Transformation Similar to linear regression, we can also enrich the linear predictor for
classification by transforming the features. This can potentially turn linearly inseparable data into
linearly separable data. For example, consider the following “XOR” dataset. The four data points
are not linearly separable. (Why?)

1Sometimes we might also use Y = {0, 1}.
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Figure 2: XOR dataset is not linearly separable.

We can then consider the following polynomial expansion:

φ(x) = (1, x1, x2, x1x2)

Then the predictor f̂(x) = −1 + 2x1 + 2x2 − 3.5x1x2 that is linear in φ(x) can perfectly separate
the dataset.

In particular, by applyining non-linear transformation on the “raw” features, we obtain non-
linear decision boundary even with linear predictors.

Figure 3: Visualization of the decision boundary of the linear mapping f̂ on the transformed feature
φ(x). We can then classify the XOR dataset perfectly.

Hardness of ERM The ERM objective in (1) can be further re-written as the following opti-
mization problem:

arg min
w∈Rd

1

n

n∑
i=1

1[sign(wᵀxi) 6= yi] (2)

It looks simple, but it is actually a NP-hard problem. It means that if you have an algorithm
for solving this problem with running time poly(d, n), then you could also obtain a polynomial-
time algorithm for hard problems like traveling salesman problem, which is impossible unless NP
= P. You might want to relax the problem a bit, and hope for efficient algorithms for all possible
instances, but it turns out that even the following problem is NP-Hard: suppose that you are given a

2



dataset {(xi, yi)}i such that there exists a linear predictor that correctly labels 99% of the examples,
find a linear predictor that correctly labels 51% of the examples [1].

Margin The quantity zi = yi(w
ᵀxi) is called the margin of w on example (xi, yi). Let `01(z) =

1[z ≤ 0]. Then we can rewrite the objective in (2) as follows

min
w∈Rd

1

n

n∑
i=1

1[yi(w
ᵀxi) ≤ 0] =

1

n

n∑
i=1

`01(z). (3)

1 Relaxing 0-1 Loss
To obtain efficient algorithms, we will replace the zero-one loss `01 with other surrogate loss
functions that are convex. Examples include:

• Hinge loss (in SVM): `hin = max{0, 1− z}

• Logisitic loss (in logistic regression): `log = ln(1 + exp(−z))

• Exponential loss (in AdaBoost): `exp(z) = exp(−z)

Figure 4: Visualization of the different surrogate losses. Image source.

Unlike the least squares regression solution (that is A+b) from previous lectures, the problem
of minimizing the empirical risk R̂ with these loss functions does not admit closed-form solution
in general. However, their convexity structure does allow us to apply convex optimization methods.
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2 Gradient Descent
Given a function F : Rd → R, gradient descent is an iterative method that udpates the parameter
as follows:

wt+1 ← wt − ηt∇wF (w
t)

where w0 is the initial point and ηt is the learning rate.
For provable convergence, we will set ηt depending on properties on the function F , including

Lipschitz constant. In practice, we try different small values. Note that learning rate is another
example of hyperparameters.

For example, in the case of logistic regression, the empirical risk R̂log(w) = 1
n

∑n
i=1 `log(zi) is

just another example such function F . Now go ahead and solve homework1.

3 Convexity
The gradient descent method provides provable convergence/optimization guarantee for the class
of convex functions. Let us formally define it here.

A set C ⊆ Rd is convex if all any two points x1, x2 ∈ C, the point λx1 + (1 − λ)x2 ∈ C for
any λ ∈ [0, 1].

A function F : C → R is convex if all any two points x1, x2 ∈ C, and any λ ∈ [0, 1]:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).
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