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We will now derive a different method for linear classification–Support Vector Machine (SVM)–
that is based on the idea of margin maximization.

1 Margin Maximization
Let us start with an easy case where the data is linearly separable. In this case, there may be
infinitely many linear predictors that can achieve zero training error. An intuive solution to break
ties is to select the predictor that maximizes the distance between the data points and the decision
boundary, which is given by a hyperplane in this case. Now let us write this as an optimization.

Figure 1: There are inifinitely many hyperplanes that can classify all the training data correctly.
We are looking for the one that maximizes the margin. Image source.

For any linear predictor with a weight vector w ∈ Rd, the decision boundary is the hyperplane
H = {x ∈ Rd | wᵀx = 0}. If the linear predictor perfectly classifies has zero training error, then
we know that for all (xi, yi) ∈ Rd × {±1}: yiwᵀxi > 0. The distance between the point yixi and
H is given by

yiw
ᵀxi

‖w‖2
The smallest distance from all training points to the hyperplane is given by

min
i

yiw
ᵀxi

‖w‖2
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Then the problem of maximing the margin or distance from the separating hyperplane to the train-
ing data is:

max
w

min
i

yiw
ᵀxi

‖w‖2
Observe that rescaling the vector w does not actually change the relevant hyperplane and the

distances. It suffices to consider the set w’s such that mini yiw
ᵀxi = 1. Then the problem of

margin maximization becomes

max
w

1

‖w‖2
such that min

i
yi(w

ᵀxi) = 1

Or equivalently,

min
w

1

2
‖w‖22 such that ∀i, yi(wᵀxi) ≥ 1 (1)

Note that the objectives are the same, but the constraints are different. (Why are two optimiza-
tion problems equivalent?)

The optimization problem in (1) computes the linear classifier with the largest margin—the
support vector machine (SVM) classifier. The solution is also unique.

Soft-Margin SVM
More generally, the training examples may not be linearly separable. To handle this case, we will
introduce slack variables. For each of the n training examples, we will introduce an non-negative
variable ξi, and the optimization problem becomes:

min
w

1

2
‖w‖22 + C

n∑
i=1

ξi such that (2)

∀i, yi(w
ᵀxi) ≥ 1− ξi (3)

∀i, ξi ≥ 0 (4)

This is also called the soft-margin SVM. Note that ξi/‖w‖2 is the distance the example i need
to move to satisfy the constraint yi(wᵀxi) ≥ 1.

Equivalently, the soft-margin SVM problem can be written as the following unconstrained
optimization problem, which replaces the second term with hinge losses:

min
w

1

2
‖w‖22 + C

n∑
i=1

max{0, 1− yiwᵀxi}︸ ︷︷ ︸
hinge loss

We will now introduce a more general method that turns a constrained optimization problem
into an unconstrained optimization problem by using the idea of Lagrange duality.
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Detour of Duality
In general, consider the following constrained optimization problem:

min
w

F (w) s.t. hj(w) ≤ 0 ∀j ∈ [m]

For each of the constraint, we can introduce a Lagrangian multiplier λj ≥ 0, and write down
the following Lagrangian function:

L(w, λ) = F (w) +
m∑
j=1

λjhj(w)

Note thats maxλ L(w, λ) is∞ whenever the w violates one of the constraints. This means the
solution to the following problem

min
w

max
λ

L(w, λ)

is exactly the solution to constrained optimization problem. (Why?)
Now let’s swap min and max, and consider the following problem:

max
λ

min
w

L(w, λ)

Let w∗ = argminw(maxλ L(w, λ)) and λ∗ = argmaxλ(minw L(w, λ)). We can derive the fol-
lowing:

max
λ

min
w

L(w, λ) = min
w

L(w, λ∗) (definition of λ∗)

≤ L(w∗, λ∗) (definition of min)
≤ max

λ
L(w∗, λ) (definition of max)

= min
w

max
λ

L(w, λ) (definition of w∗)

The relationship of maxmin ≤ minmax is called weak duality.
Under “mild” condition (e.g. convex quadratic problem, the so-called Slater’s condition), we

also have strong duality:
max
λ

min
w

L(w, λ) = min
w

max
λ

L(w, λ)

Under strong duality, we can further write:

F (w∗) = min
w

max
λ

L(w, λ) (definition of w∗)

= max
λ

min
w

L(w, λ) (strong duality)

= min
w

L(w, λ∗) (definition of λ∗)

≤ L(w∗, λ∗) (definition of min)

= F (w∗) +
∑
j

λ∗jhj(w
∗) (definition of L)
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Note that since w∗ is a feasible solution such that hj(w∗) ≤ 0 for all j, each term λ∗jhj(w
∗) ≤

0, and so the inequality above should also just be equality. This has the following implications:

• (Complementary slackness): last equality implies that λ∗jhj(w
∗) = 0 for all j.

• (Stationarity): w∗ is the minimizer of L(w, λ∗) and thus has gradient zero

∇wL(w
∗, λ∗) = ∇F (w∗) +

∑
j

λ∗j∇hj(w∗) = 0

• (Feasibility): λj ≥ 0 and hj(w∗) ≤ 0 for all j.

These are also called the KKT conditions, which are necessary conditions for the optimal
solutions. But they are sufficient when F is convex and the set of hj are continuously differentiable
convex functions.

What is KKT? This was previously known as the KT (Kuhn-Tucker) conditions since the cond-
tions first appeared in publication by Kuhn and Tucker in 1951. However, later people found out
that Karush had stated the conditions in his unpublished master’s thesis of 1939.
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