
CSCI 5525 Machine Learning Fall 2019

Lecture 7: Support Vector Machine (Part 2)
Feb 17th 2020

Lecturer: Steven Wu Scribe: Steven Wu

In the last lecture, we consider a general form of constrained optimization problem:

min
w

F (w) s.t. hj(w) ≤ 0 ∀j ∈ [m]

For each constraint, we introduce a Lagrangian multiplier (or dual variable) λj ≥ 0, and write
down the following Lagrangian function:

L(w, λ) = F (w) +
m∑
j=1

λjhj(w)

Under “mild” condition (e.g. SVM problem, the so-called Slater’s condition), strong duality holds

max
λ

min
w

L(w, λ) = min
w

max
λ

L(w, λ)

Let w∗ = argminw(maxλ L(w, λ)) and λ∗ = argmaxλ(minw L(w, λ)) denote the optimal primal
and dual solutions respectively. When strong duality holds, we have the following KKT conditions:

• (Complementary slackness): last equality implies that λ∗jhj(w
∗) = 0 for all j.

• (Stationarity): w∗ is the minimizer of L(w, λ∗) and thus has gradient zero

∇wL(w
∗, λ∗) = ∇F (w∗) +

∑
j

λ∗j∇hj(w∗) = 0

• (Feasibility): λj ≥ 0 and hj(w∗) ≤ 0 for all j.

The KKT conditions are necessary conditions for the optimal solutions. However, they are also
sufficient when F is convex and the set of hj are continuously differentiable convex functions.

Dual Formulation of SVM
Now we apply the tools Lagrange duality to the soft-margin SVM problem.

min
w

1

2
‖w‖22 + C

n∑
i=1

ξi such that (1)

∀i, yi(w
ᵀxi) ≥ 1− ξi (2)

∀i, ξi ≥ 0 (3)

1

https://en.wikipedia.org/wiki/Slater%27s_condition

To derive the Lagrangian, we rewrite each constraint in (2) as

1− ξi − yiwᵀxi ≤ 0

and introduce a dual variable λi ≥ 0. For each constraint ξi ≥ 0, we introduce a dual variable
αi ≥ 0. The set of variables w and ξ that are called the primal variables. This allows us to write
down the Lagrangian objective:

L(w, ξ, λ, α) =
1

2
‖w‖22 + C

n∑
i=1

ξi +
n∑
i=1

λi(1− ξi − yiwᵀxi)−
n∑
i=1

αiξi

Now we can apply the KKT conditions to obtain some characterizations of the SVM solution.
First, applying the staionarity condition∇w,ξL(w

∗, ξ∗, λ∗, α∗) = 0:

w =
∑
i

yiλ
∗
ixi (∂L

∂w
= 0)

C − λ∗i − α∗i = 0 ∀i (∂L
∂ξi

= 0)

Let us plug these back into L:

L(w, ξ, λ, α) = C
n∑
i=1

ξi +
1

2

∥∥∥∥∥
n∑
i=1

yiλixi

∥∥∥∥∥
2

2

−
n∑
i=1

αiξi +
n∑
i=1

λi(1− ξi − yiwᵀxi) (4)

=
1

2

∥∥∥∥∥
n∑
i=1

yiλixi

∥∥∥∥∥
2

2

+
∑
i

λi −
∑
i

λi

(
yi

(∑
j

yjλjxj

)ᵀ

xi

)
(Plug in C = αi + λi)

=
1

2

∥∥∥∥∥
n∑
i=1

yiλixi

∥∥∥∥∥
2

2

+
∑
i

λi −
∑
i,j∈[n]

λiλjyiyjx
ᵀ
i xj (5)

=
∑
i

λi −
1

2

∑
i,j∈[n]

λiλjyiyjx
ᵀ
i xj (6)

The optimization problem then becomes:

max
α,λ

∑
i

λi −
1

2

∑
i,j∈[n]

λiλjyiyjx
ᵀ
i xj

such that for all i : C = λi + αi

λi, αi ≥ 0

Observe that we could also replace the constraints by the following so that we only have one set of
decision variables to optimize:

for all i : 0 ≤ λi ≤ C

2

This is a quadratic program with a quadratic objective function and a set of linear constraints.
Suppose we are given the optimal solution λ∗. What is the linear predictor we get from this dual
solution? We know from the KKT conditions that

w∗ =
n∑
i=1

yiλ
∗
ixi =

∑
i : λ∗i>0

yiλ
∗xi

Any point i with λ∗i > 0 is called a support vector, hence the name SVM.
Now let us apply complementary slackness from the KKT conditions:

for all i, α∗i ξ
∗
i = 0, λ∗i (1− ξ∗i − yi〈w∗, xi〉) = 0

For any support vector with λ∗i > 0, we then also have

(1− ξ∗i − yi〈w∗, xi〉) = 0⇔ 1− ξ∗i = yi〈w∗, xi〉

We can break it down into the following cases:

• If ξ∗i = 0, then yi〈w∗, xi〉 = 1, which means the point is exactly 1/‖w‖ away from the
decision boundary.

• If ξ∗i < 1, then yi〈w∗, xi〉 ∈ (0, 1), then this point is classified correctly but pretty close to
the decision boundary with distance less than 1/‖w‖.

• If ξ∗i > 1, then yi〈w∗, xi〉 < 0, then this point is classified incorrectly.

SVM as compuression. SVM can also be viewed as a form of compression, since we only need
the support vectors to define the final solution. If all examples other than the support vectors are
removed from the training set, and the we rerun SVM, the same weight vector would be found.

Multiclass Extensions
SVM is inherently a classfication method for binary class Y . There are many ways to take bi-
nary classificaton methods like SVM to solve multiclass classification problems. We discuss two
standard approaches here. Let Y = {1, . . . , k}.

One-against-all. This involves solving k binary classification problems, each of which requires
us to classify the current class j against all other classes. Given a datasetD = {(x1, y1), . . . , (xn, yn)},
we can construct k datasets D1, . . . , Dk such that

Dj = {(xi,1[yi = j])}ni=1

Then run SVM k times: on each dataset Dj to obtain a weight vector wj . Finally, on any example
x, we will predict

ŷ = argmax
j∈Y
〈wj, x〉

3

One-against-one. Run SVM k(k − 1)/2 times: for every pair j, j′ ∈ Y such that j < j′, learn a
weight vector wj,j′ that distinguishes between the two classes using the subset of data with labels
j and j′. For each example x, the weight vector wjj′ “votes” for either label j or label j′. Finally,
we predict the class with the highest votes given by the weight vectors wjj′ .

We can also modify binary SVM directly to construct a multiclass SVM method.

Multiclass SVM Another idea similar to one-against-all is to train w1, . . . ,wk simultaneously
by asking the predictor to predict the right label on each example:

min
w1,...,wk

1

2

k∑
j=1

‖wj‖22 + C
n∑
i=1

ξi such that

∀i, ∀j 6= yi wᵀ
yi
xi ≥ wᵀ

jxi + 1− ξi
∀i, ξi ≥ 0

4

