
CSCI 5525 Machine Learning Fall 2019

Lecture 8: Kernels
Feb 17th 2020

Lecturer: Steven Wu Scribe: Steven Wu

Feature Expansion
We have seen some examples of feature expansions that enrich the feature space and provde more
flexible predictor. To motivate the idea of kernel, we will consider several examples of feature
expansion mappings φ such that it is easy to compute products φ(x)ᵀφ(x′) eeven thouth it might
be computationally expensive to compute φ(x). Later we will show that for many methods that use
linear models, the algorithm does not need to explicitly compute φ(x), as long as it can compute
these products.

Quadratic expansion For x ∈ Rd, consider the following quadratic expansion:

φ(x) = (1,
√

2x1, . . . ,
√

2xd, x
2
1, . . . , x

2
d,
√

2x1x2, . . . ,
√

2xd−1xd)

Under this expansion, the product

φ(x)ᵀφ(x′) = (1 + xᵀx′)2

which can be computed in O(d) time, as opposed to O(d2).

Products of all subsets. Now let us blow up the dimension even more. Consider the following
feature expansion mapping

φ(x) =

(∏
i∈S

xi

)
S⊆[d]

Then we still compute the product in time O(d) (instead of 2d):

φ(x)ᵀφ(x) =
d∏
i=1

(1 + xix
′
i)

Gaussian kernel. Now, let’s be more ambitious and push the dimension to infinity. For any
parameter σ > 0, consider a feature expansion φ such that

φ(x)ᵀφ(x′) = exp

(
−‖x− x

′‖22
2σ2

)
1



This product can be computed in O(d) time. So what is φ? Let us try the simple case of x ∈ R.
Then

φ(x)φ(y) = exp(−(x− y)2/(2σ2))

= exp(−x2/(2σ2)) exp(−y2/(2σ2)) exp(xy/σ2)

= exp(−x2/(2σ2)) exp(−y2/(2σ2))
∞∑
j=0

1

j!

(
xy/σ2

)j
where the last step comes from Taylor expansion. This gives

φ(x) = exp(−x2/(2σ2))

(
1,
x

σ
,

1

2!

(x
σ

)2
,

1

3!

(x
σ

)3
. . .

)
which is in R∞. The similarity measureK(x, x′) = φ(x)ᵀφ(x′) defined above is called RBF kernel
or Gaussian kernel. Now we will formally define kernel.

Kernel
Definition 0.1 (Kernel). A kernel function K : X × X → R is a symmetric function such that for
any x1, x2, . . . , xn ∈ X , the n × n Gram matrix G with each (i, j)-th entry Gij = K(xi, xj), is
positive semidefinite (p.s.d.).

Recall that a matrix G ∈ Rn×n is positive semi-definite if and only if ∀q ∈ Rn, qᵀGq ≥ 0.

How to show K is a kernel? A simple way to show a function K is a kernel is to find a feature
expansion mapping φ such that1

φ(x)ᵀφ(x′) = K(x, x′)

Now consider the Gram matrix defined above, where each entry Gij = φ(xi)
ᵀφ(xj). This means

the Gram G = ΦᵀΦ, where Φ = [φ(x1), . . . , φ(xn)] (that is each φ(xi) is a column vector). It
follows that K is p.s.d., because

qᵀGq = qᵀΦᵀΦq = ‖Φq‖22 ≥ 0

Inversely, if K is a valid kernel, then there exists a feature mapping φ such that φ(x)ᵀφ(x′) =
K(x, x′). Relatedly, any p.s.d. matrix G can be factorized as G = ΦᵀΦ for some realization of Φ.

Another way to show K is a kernel is to show that we can obtain K from existing kernels with
the following set of rules.

1The function φ maps X to H, where H is a Hilbert space called the Reproducing Kernel Hilbert Space (RKHS)
corresponding to K.You could read more about it here.

2

http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/RKHS_Notes1.pdf


Building new kernels from existing kernels. Suppose K1, K2 are valid kernels, c ≥ 0, g is a
polynomial function with positive coefficients (that is

∑m
j=1 αjx

j for some m ∈ N, α1, . . . , αm ∈
R+), f is any function and matrix A � 0 is positive semi-definite. Then following functions are
also valid kernels:

• K(x, x′) = cK1(x, x
′)

• K(x, x′) = K1(x, x
′) +K2(x, x

′)

• K(x, x′) = g(K(x, x′))

• K(x, x′) = K1(x, x
′)K2(x, x

′)

• K(x, x′) = f(x)K1(x, x
′)f(x′)

• K(x, x′) = exp (K1(x, x
′))

• K(x, x′) = x>Ax′

In the homework, you will show some of them formally.

Examples of kernel functions:

• Linear: K(x, x′) = xᵀx′.

(Althoug this does not modify the features, it can be faster to pre-compute the Gram matrix
when the dimensionality d of the data is high.)

• Polynomial:
K(x, x′) = (1 + xᵀx′)d

• Radial Basis Function (RBF) (aka Gaussian Kernel):

K(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
• Exponential Kernel:

K(x, x′) = exp

(
−‖x− x′‖2

2σ2

)
Now let’s apply kernel to different linear methods.

3



Figure 1: From left to right: decision boundaries of kernel SVM with linear, polynomial (of degree
3), and RBF kernels. Image source.

Kernel SVM
Note that all of our derivation for SVM holds if we replace each feature vector xi by some feature
expansion φ(xi). The dual SVM problem then becomes:

max
α,λ

∑
i

λi −
1

2

∑
i,j∈[n]

λiλjyiyjφ(xi)
ᵀφ(xj)

such that for all i : 0 ≤ λi ≤ C

We can replace the product φ(xi)
ᵀφ(xj) with K(xi, xj) and rewrite the objective:

max
α,λ

∑
i

λi −
1

2

∑
i,j∈[n]

λiλjyiyjK(xi, xj)

How do we represent the underlying linear predictor now? If we are forced to write down ŵ,
this will be an infinite-dimensional object. Well, it turns out that we only need to remember the
support vectors (with λ∗i > 0), since the prediction for any example x is:

φ(x)ᵀŵ =
n∑
i=1

yiλ
∗
iφ(x)ᵀφ(xi) =

n∑
i=1

yiλ
∗
iK(x, xi)

This requires iterating the support vector examples (xi, yi) along with their associated dual vari-
ables λ∗i to actually get a prediction. Figure 1 shows kernel SVM with different choices of kernel
functions.

Kernelized ridge regression
We can also apply the idea of kernels to ridge regression. This is sometimes called kernelized ridge
regression. Recall the notations of design matrix and response vector in linear regression:

A =

← xᵀ1 →
...

← xᵀn →

 b =

y1...
yn


4

https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html


The ridge regression solution is given by

ŵ = (AᵀA+ λI)−1Aᵀb. (1)

Here is a neat trick in linear algebra. Let P be an N ×M matrix while Q be an M ×N matrix:

(PQ+ IN)−1P = P (QP + IM)−1

Now if we set P = (1/λ)Aᵀ and Q = A, then

(AᵀA+ λId)
−1Aᵀ = Aᵀ(AAᵀ + λIn)−1 = Aᵀ(G+ λIn)−1

where G is the n × n Gram matrix with Gij = xᵀi xj . This gives an alternative form of the ridge
regression solution in terms of the Gram matrix

ŵ = Aᵀ (G+ λIn)−1b︸ ︷︷ ︸
v

= Aᵀv =
n∑
i=1

vixi

Thus, for any new feature vector x, the prediction will be

xᵀŵ =
n∑
i=1

vix
ᵀxi

Now if we replace each xi with φ(xi), then G is the Gram matrix, each entry Gij = K(xi, xj),
which will allow us to compute v. Then during prediction time

φ(x)ᵀŵ =
n∑
i=1

viφ(x)ᵀφ(xi)

While we can potentially obtain richer representation of the feature space, the downside is that we
need to store a lot of information for making predictions.

5


