Lecture 10: Neural Networks (Part 2)

Feb 25th, 2020
Lecturer: Steven Wu
Scribe: Steven Wu

1 Backpropagation

Now we consider ERM problem of minimizing the following empirical risk function over θ :

$$
\hat{\mathcal{R}}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, F\left(x_{i}, \theta\right)\right)
$$

where the ℓ denote the loss function that can be cross-entropy loss or square loss. We will use gradient descent method to optimize this function, even though the loss function is non-convex. First, the graident w.r.t. each W_{j} is defined as

$$
\nabla_{W_{j}} \hat{\mathcal{R}}(\theta)=\nabla_{W_{j}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, F\left(x_{i}, \theta\right)\right)=\frac{1}{n} \sum_{i=1}^{n} \nabla_{W_{j}} \ell\left(y_{i}, F\left(x_{i}, \theta\right)\right)
$$

We can derive the same equality for the gradient w.r.t. each b_{j}. It suffices to look at the gradient for each example. We can rewrite the loss for each example as

$$
\begin{aligned}
\ell\left(y_{i}, F\left(x_{i}, \theta\right)\right) & =\ell\left(y_{i}, \sigma_{L}\left(W_{L}\left(\ldots W_{2} \sigma_{1}\left(W_{1} x_{i}+b_{1}\right)+b_{2} \ldots\right)+b_{L}\right)\right) \\
& =\tilde{\sigma}_{L}\left(W_{L}\left(\ldots W_{2} \sigma_{1}\left(W_{1} x_{i}+b_{1}\right)+b_{2} \ldots\right)+b_{L}\right) \\
& \equiv \tilde{F}\left(x_{i}, \theta\right)
\end{aligned}
$$

where $\tilde{\sigma}_{L}$ absorbs y_{i} and ℓ, that is $\tilde{\sigma}_{L}(a)=\ell\left(y_{i}, a\right)$ for any a. Note that σ_{L}^{\prime} can just be viewed as another activation function, so this loss function can just be viewed as a different neural network mapping. Therefore, it suffices to look at the gradient $\nabla_{W_{j}} F(x, \theta)$ for any neural network F-the gradient computation will be the same.

Backpropagation is a linear time algorithm with runtime $O(V+E)$, where V is the number of nodes and E is the number of edges in the network. It is essentially a message passing protocol.

Univariate case. Let's work out the case where everything is in \mathbb{R}. The goal is to compute the derivative of the following function

$$
F(\theta)=\sigma_{L}\left(W_{L}\left(\ldots W_{2} \sigma_{1}\left(W_{1} x+b_{1}\right)+b_{2} \ldots\right)+b_{L}\right)
$$

For any $1 \leq j \leq L$, let

$$
F_{j}(\theta)=\sigma_{j}\left(W_{j}\left(\ldots W_{2} \sigma_{1}\left(W_{1} x+b_{1}\right)+b_{2} \ldots\right)+b_{j}\right), \quad J_{j}=\sigma_{j}^{\prime}\left(W_{j} F_{j-1}(\theta)+b_{j}\right)
$$

All of these quantities can be computed with a forward pass. Next, we can apply chain rule and compute derivative with a backward pass:

$$
\begin{aligned}
\frac{\partial F_{L}}{\partial W_{L}} & =J_{L} F_{L-1}(\theta) \\
\frac{\partial F_{L}}{\partial b_{L}} & =J_{L} \\
& \ldots \\
\frac{\partial F_{L}}{\partial W_{j}} & =J_{L} W_{L} J_{L-1} W_{L-1} \ldots F_{j-1}(\theta) \\
\frac{\partial F_{L}}{\partial b_{j}} & =J_{L} W_{L} J_{L-1} W_{L-1} \ldots J_{j}
\end{aligned}
$$

Multivariate case. That looks nice and simple. Now as we move to multi-dimensional case, we will need the following multivariate chain rule:

$$
\nabla_{W} f(W a)=J^{\top} a^{\top}
$$

where $J \in \mathbb{R}^{l} \times \mathbb{R}^{k}$ is the Jacobian matrix of $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{l}$ at $W a$. (Recall that for any function $f\left(r_{1}, \ldots, r_{k}\right)=\left(y_{1}, \ldots y_{l}\right)$, the entry $J_{i j}=\partial y_{i} / \partial r_{j}$. Applying chain rule again:

$$
\begin{aligned}
& \frac{\partial F_{L}}{\partial W_{L}}=J_{L}^{\top} F_{L-1}(\theta)^{\top} \\
& \frac{\partial F_{L}}{\partial b_{L}}=J_{L}^{\top} \\
& \ldots \\
& \frac{\partial F_{L}}{\partial W_{j}}=\left(J_{L} W_{L} J_{L-1} W_{L-1} \ldots J_{j}\right)^{\top} F_{j-1}(\theta)^{\top} \\
& \frac{\partial F_{L}}{\partial b_{j}}=\left(J_{L} W_{L} J_{L-1} W_{L-1} \ldots J_{j}\right)^{\top}
\end{aligned}
$$

where J_{j} is the Jacobian of σ_{j} at $W_{j} F_{j-1}(\theta)+b_{j}$. If σ_{j} is applying the coordinatewise activation function, then the Jacobian matrix is diagonal.

2 Stochastic Gradient Descent

Recall that the empirical gradient is defined as

$$
\nabla_{\theta} \hat{\mathcal{R}}(\theta)=\nabla_{\theta} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, F\left(x_{i}, \theta\right)\right)
$$

For large n, this can be very expensive to compute. A common practice is to evaluate the gradient on a mini-batch $\left\{\left(x_{i}^{\prime}, y_{i}^{\prime}\right)\right\}_{i=1}^{b}$ selected uniformly at random. In expectation, the update is moving to the right direction:

$$
\mathbf{E}\left[\frac{1}{b} \sum_{i} \nabla_{\theta} \ell\left(y_{i}^{\prime}, F\left(x_{i}, \theta^{t}\right)\right)\right]=\nabla_{\theta} \hat{\mathcal{R}}\left(\theta^{t}\right)
$$

The batch size is another hyperparameter to tune.

