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1 Backpropagation

Now we consider ERM problem of minimizing the following empirical risk function over 6:
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where the ¢ denote the loss function that can be cross-entropy loss or square loss. We will use
gradient descent method to optimize this function, even though the loss function is non-convex.
First, the graident w.r.t. each W} is defined as
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We can derive the same equality for the gradient w.r.t. each b;. It suffices to look at the gradient
for each example. We can rewrite the loss for each example as
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where &, absorbs y; and /, that is 7 (a) = ¢(y;, a) for any a. Note that ¢, can just be viewed as
another activation function, so this loss function can just be viewed as a different neural network
mapping. Therefore, it suffices to look at the gradient Vyy, F'(z, ¢) for any neural network F'—the
gradient computation will be the same.

Backpropagation is a linear time algorithm with runtime O(V + E), where V' is the number of
nodes and E is the number of edges in the network. It is essentially a message passing protocol.

Univariate case. Let’s work out the case where everything is in R. The goal is to compute the
derivative of the following function
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All of these quantities can be computed with a forward pass. Next, we can apply chain rule and
compute derivative with a backward pass:
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Multivariate case. That looks nice and simple. Now as we move to multi-dimensional case, we
will need the following multivariate chain rule:

Vi f(Wa) = JTaT

where J € R! x R¥ is the Jacobian matrix of f: R*¥ — R! at Wa. (Recall that for any function
f(ri,...,r) = (v1, ... yi), the entry J;; = Oy;/0r;.) Applying chain rule again:
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where J; is the Jacobian of o at W, F;_,(0) + b;. If 0 is applying the coordinatewise activation
function, then the Jacobian matrix is diagonal.

2 Stochastic Gradient Descent

Recall that the empirical gradient is defined as
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For large n, this can be very expensive to compute. A common practice is to evaluate the gradient
on a mini-batch {(x},!)}_, selected uniformly at random. In expectation, the update is moving
to the right direction:
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The batch size is another hyperparameter to tune.
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