CSCI 5525 Machine Learning Fall 2019

Lecture 10: Neural Networks (Part 2)
Feb 25th, 2020

Lecturer: Steven Wu Scribe: Steven Wu

1 Backpropagation

Now we consider ERM problem of minimizing the following empirical risk function over 6:
. 1 &
i=1

where the ¢ denote the loss function that can be cross-entropy loss or square loss. We will use
gradient descent method to optimize this function, even though the loss function is non-convex.
First, the graident w.r.t. each W} is defined as

. 1 —] —
Vi, R(0) = VWJ.E Zl 0(y;, F(x;,0)) = - Zl Vi, E(yi, F(x:,0))

We can derive the same equality for the gradient w.r.t. each b;. It suffices to look at the gradient
for each example. We can rewrite the loss for each example as

g(yh F(xﬂ 6)) = 6(3/17 or (WL< .. WQO-l(Wlxi + b1> —+ b2 .) —+ bL))
=0 (Wr(.. . Wao (Wi +b1) +by...) +br)

= F(z;,0)

where &, absorbs y; and /, that is 7 (a) = ¢(y;, a) for any a. Note that ¢, can just be viewed as
another activation function, so this loss function can just be viewed as a different neural network
mapping. Therefore, it suffices to look at the gradient Vyy, F'(z, ¢) for any neural network F'—the
gradient computation will be the same.

Backpropagation is a linear time algorithm with runtime O(V + E), where V' is the number of
nodes and E is the number of edges in the network. It is essentially a message passing protocol.

Univariate case. Let’s work out the case where everything is in R. The goal is to compute the
derivative of the following function

F0) =0, (Wr(... Wooy(Wiz +by) +by...)+bp)
Forany 1 <7 < L, let

FJ(H) =0j (W](.. WQO‘l(Wll' + bl) + b2 R) + b]) s Jj = 0}(Wij_1(¢9) + b])

1

All of these quantities can be computed with a forward pass. Next, we can apply chain rule and
compute derivative with a backward pass:

oFy

8WL E JLFL_l(H)
oF;,
g
b, *F
OF
awg- = I Wy Wiy ... F;_1(6)
OF
L= WL AWy ..
b,

Multivariate case. That looks nice and simple. Now as we move to multi-dimensional case, we
will need the following multivariate chain rule:

Vi f(Wa) = JTaT

where J € R! x R¥ is the Jacobian matrix of f: R*¥ — R! at Wa. (Recall that for any function
f(ri,...,r) = (v1, ... yi), the entry J;; = Oy;/0r;.) Applying chain rule again:

OF

awLL = JLFL(0)

or,

b, T

OF

GI/VL~ = (JWrJp Wi ... Jj)TFj—lw)T
j

OF

8_l7~L = (JWrdpaWp_q ... J;)T
j

where J; is the Jacobian of o at W, F;_,(0) + b;. If 0 is applying the coordinatewise activation
function, then the Jacobian matrix is diagonal.

2 Stochastic Gradient Descent

Recall that the empirical gradient is defined as

. 1 &
VoR(6) = Vs ;é(yi, F(x;,0))

For large n, this can be very expensive to compute. A common practice is to evaluate the gradient
on a mini-batch {(x},!)}_, selected uniformly at random. In expectation, the update is moving
to the right direction:

1 , A
E - Z Vol(yl, F(x;,0%))| = VoR(6")

The batch size is another hyperparameter to tune.

	Backpropagation
	Stochastic Gradient Descent

