
CSCI 5525 Machine Learning Fall 2019

Lecture 10: Neural Networks (Part 2)
Feb 25th, 2020

Lecturer: Steven Wu Scribe: Steven Wu

1 Backpropagation
Now we consider ERM problem of minimizing the following empirical risk function over θ:

R̂(θ) = 1

n

n∑
i=1

`(yi, F (xi, θ))

where the ` denote the loss function that can be cross-entropy loss or square loss. We will use
gradient descent method to optimize this function, even though the loss function is non-convex.
First, the graident w.r.t. each Wj is defined as

∇Wj
R̂(θ) = ∇Wj

1

n

n∑
i=1

`(yi, F (xi, θ)) =
1

n

n∑
i=1

∇Wj
`(yi, F (xi, θ))

We can derive the same equality for the gradient w.r.t. each bj . It suffices to look at the gradient
for each example. We can rewrite the loss for each example as

`(yi, F (xi, θ)) = `(yi, σL (WL(. . .W2σ1(W1xi + b1) + b2 . . . ) + bL))

= σ̃L (WL(. . .W2σ1(W1xi + b1) + b2 . . . ) + bL)

≡ F̃ (xi, θ)

where σ̃L absorbs yi and `, that is σ̃L(a) = `(yi, a) for any a. Note that σ′L can just be viewed as
another activation function, so this loss function can just be viewed as a different neural network
mapping. Therefore, it suffices to look at the gradient ∇Wj

F (x, θ) for any neural network F–the
gradient computation will be the same.

Backpropagation is a linear time algorithm with runtime O(V +E), where V is the number of
nodes and E is the number of edges in the network. It is essentially a message passing protocol.

Univariate case. Let’s work out the case where everything is in R. The goal is to compute the
derivative of the following function

F (θ) = σL (WL(. . .W2σ1(W1x+ b1) + b2 . . . ) + bL)

For any 1 ≤ j ≤ L, let

Fj(θ) = σj (Wj(. . .W2σ1(W1x+ b1) + b2 . . . ) + bj) , Jj = σ′j(WjFj−1(θ) + bj)

1



All of these quantities can be computed with a forward pass. Next, we can apply chain rule and
compute derivative with a backward pass:

∂FL
∂WL

= JLFL−1(θ)

∂FL
∂bL

= JL

. . .

∂FL
∂Wj

= JLWLJL−1WL−1 . . . Fj−1(θ)

∂FL
∂bj

= JLWLJL−1WL−1 . . . Jj

Multivariate case. That looks nice and simple. Now as we move to multi-dimensional case, we
will need the following multivariate chain rule:

∇Wf(Wa) = Jᵀaᵀ

where J ∈ Rl × Rk is the Jacobian matrix of f : Rk → Rl at Wa. (Recall that for any function
f(r1, . . . , rk) = (y1, . . . yl), the entry Jij = ∂yi/∂rj .) Applying chain rule again:

∂FL
∂WL

= Jᵀ
LFL−1(θ)

ᵀ

∂FL
∂bL

= Jᵀ
L

. . .

∂FL
∂Wj

= (JLWLJL−1WL−1 . . . Jj)
ᵀFj−1(θ)

ᵀ

∂FL
∂bj

= (JLWLJL−1WL−1 . . . Jj)
ᵀ

where Jj is the Jacobian of σj at WjFj−1(θ) + bj . If σj is applying the coordinatewise activation
function, then the Jacobian matrix is diagonal.

2 Stochastic Gradient Descent
Recall that the empirical gradient is defined as

∇θR̂(θ) = ∇θ
1

n

n∑
i=1

`(yi, F (xi, θ))

2



For large n, this can be very expensive to compute. A common practice is to evaluate the gradient
on a mini-batch {(x′i, y′i)}bi=1 selected uniformly at random. In expectation, the update is moving
to the right direction:

E

[
1

b

∑
i

∇θ`(y
′
i, F (xi, θ

t))

]
= ∇θR̂(θt)

The batch size is another hyperparameter to tune.

3


	Backpropagation
	Stochastic Gradient Descent

