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We have now seen several methods for supervised machine learning, and we have mostly talked
about how to solve the empirical risk minimization problem–that is given a finite set of data, find
a model in some class to minimize some loss function. We haven’t talked about how these learned
models will perform on future instances or the underlying distribution. We will now study several
theoretical tools for analyzing the generalization error of a learning algorithm.

1 Bias-Variance Tradeoff
Let us revisit the general supervised learning setting. Suppose the learning algorithm given a data
set D = {(x1, y1), . . . , (xn, yn)} drawn i.i.d. from some distribution P over X × Y . For this part,
we consider a regression setting with y ∈ R and square loss. A couple definitions are in order:

Expected Label for x ∈ X .

ȳ(x) = EP [Y | X = x] =

∫
y

y P (y | x) dy

If you happen to know the distribution P perfectly, to minimize the square loss given an example
x is to predict ȳ(x). This is called the Bayes optimal predictor.

Now consider a learning algorithmA that takes the data set D drawn i.i.d. from P as input and
outputs a predictor, denoted fD = A(D). We can define:

Expected Test Error for fD.

E(x,y)∼P

[
(fD(x)− y)2

]
=

∫
x

∫
y

(fD(x)− y)2 P (x, y) dy dx

Now we should also take into account that the data set D is also drawn randomly from P , and
so there is randomness in the predictor produced by A as well.

Expected Classifier for a given algorithm A.

f̄ = ED∼Pn [fD] =

∫
D

fDP (D) dD

We can also use the fact that fD is a random variable to compute the expected test error only
given A, taking the expectation also over D.
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Expected Test Error given A.
E(x,y)∼P

D∼Pn

[
(fD(x)− y)2

]
To be clear, D is our training points and the (x, y) pairs are the test points.

This quantity measures the expected accuracy of the underlying learning algorithm A, which
is the quantity we would like analyze. Let us decompose this expected test error.

Decomposition of Expected Test Error

Ex,y,D

[
[fD(x)− y]2

]
(1)

= Ex,y,D

[[(
fD(x)− f̄(x)

)
+
(
f̄(x)− y

)]2]
= Ex,D

[
(fD(x)− f̄(x))2

]
+ 2 Ex,y,D

[(
fD(x)− f̄(x)

) (
f̄(x)− y

)]
+ Ex,y

[(
f̄(x)− y

)2] (2)

You will show that the middle term of the above equation can be shown to be 0.
Now let us deal with the variance and another term:

Ex,y,D

[
(fD(x)− y)2

]
= Ex,D

[(
fD(x)− f̄(x)

)2]︸ ︷︷ ︸
Variance

+Ex,y

[(
f̄(x)− y

)2] (3)

We can break down the second term in the above equation as follows:

Ex,y

[(
f̄(x)− y

)2]
= Ex,y

[[(
f̄(x)− ȳ(x)) + (ȳ(x)− y

)]2] (4)

= Ex,y

[
(ȳ(x)− y)2

]︸ ︷︷ ︸
Noise

+Ex

[(
f̄(x)− ȳ(x)

)2]︸ ︷︷ ︸
Bias2

+2 Ex,y

[(
f̄(x)− ȳ(x)

)
(ȳ(x)− y)

]
(5)

You will also show that the third term in the equation above can be shown to be 0.
This gives us the decomposition of expected test error as follows

Ex,y,D

[
(fD(x)− y)2

]︸ ︷︷ ︸
Expected Test Error

= Ex,D

[(
fD(x)− f̄(x)

)2]︸ ︷︷ ︸
Variance

+Ex,y

[
(ȳ(x)− y)2

]︸ ︷︷ ︸
Noise

+Ex

[(
f̄(x)− ȳ(x)

)2]︸ ︷︷ ︸
Bias2
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