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1 VC theory
Recall that in supervised learning, we have data (xi, yi)’s drawn from a distribution P over labelled
examples (X, Y ). For any predictor f in function class F (e.g. linear models, neural networks),
the empirical risk is defined as

R̂(f) = 1

n

n∑
i=1

`(yi, f(xi))

However, since we care about the predictive performance on future instances, the primary objective
should be true or population risk of f :

R(f) = E
P
[`(Y, f(X))]

The excess risk of f is then defined as

R(f)− R̂(f)

Last lecture, we gave some algorithms for solving the ERM problem: minf R̂(f). Now let’s
say the algorithm returns f̂ , which approximately solves the problem. Let f ∗ be the minimizer of
the true risk. Then the differencde between the true risks of f̂ and f ∗ can be written as

R(f̂)−R(f ∗) = R̂(f ∗)−R(f ∗) (sampling error)

+ R̂(f̂)− R̂(f ∗) (approximation error)

+R(f̂)− R̂(f̂) (generalization error)

How do we bound these things?

• First, sampling error is easiest. We know that (x1, y1), . . . , (xn, yn) are drawn i.i.d. from P .
By law of large numbers,

R̂(f ∗)→ R(f ∗)

We will be formal about how fast the convergence is in a bit.

• Secondly, approximation error depends on how good the ERM algorithm is.
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• The tricky part is the generalization error. It’s tempted to direclty apply the same reasoning
of the law of large numbers. Not quite. The output f̂ is also a random variable that depends
on the data. Recall the following predictor with no restriction.

f̂(X) =

{
yi, if X = xi

"Gopher!", otherwise

For this extreme predictor, we don’t really expect fast convergence of R̂(f̂) to R(f). The
main issue is that we are not restricting the complexity of the predictor function at all.

2 Bounding Sampling Error
Now let’s be formal about how we bound the sampling error. We will focus on the special case
where the loss ` corresponds to the the zero-one loss in classification, and so for each fixed predic-
tor f ,

R̂01(f) =
1

n

n∑
i=1

1[f(xi) 6= yi] R01(f) = E
(X,Y )∼P

[1[f(X) 6= Y ]]

How fast does R̂01 converge to R01 as a function of n? We will use the following concentration
inequality:

Theorem 2.1 (Chernoff/Hoeffding’s inequality). Let Z1, . . . , Zn ∈ [a, b] be i.i.d. real-valued ran-
dom variables drawn from a distribution D. Then

Pr

[
1

n

n∑
i=1

Zi − E [Zi] ≥ ε

]
≤ exp

(
−2nε2

(b− a)2

)
Equivalently, we can also state that for any δ ∈ (0, 1), with probability at least 1− δ,

E [Z] ≤

(
1

n

n∑
i=1

Zi

)
+ (b− a)

√
ln(1/δ)

2n

You can have each Zi as 1[f(xi) 6= yi], and so we can have the following probabilistic statement:
with probability at least 1 − δ over the i.i.d. draws of the examples (x1, y1), . . . , (xn, yn), the
following holds

R01(f) ≤ R̂01(f) +

√
ln(1/δ)

2n

Here we see the most basic complexity measure of a function class F , which is the cardinality
|F|.
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3 Finite class F
Now suppose that we would like to get the same concentration bound for the predictor f̂ returned
by the ERM method. We can no longer directly use the Chernoff bound since conditioned the
ERM output being f̂ , the collection of examples (x1, y1), . . . , (xn, yn) are no longer i.i.d. To avoid
this, we will instead ask for something stronger called “uniform convergence”, and show that the
concentration holds for every predictor f in the function class F . A useful tool is the union bound:
for any two arbitrary events A and B,

Pr[A ∪B] ≤ Pr[A] +Pr[B]

Theorem 3.1 (Uniform convergence over finite class). LetF be a finite class of predictor functions.
Then with probability 1− δ over the i.i.d. draws of (x1, y1) . . . (xn, yn), for all f ∈ F

R(f) ≤ R̂(f) +
√

ln(|F|/δ)
2n

Proof. For each f ∈ F , let Ef be the event such that R(f) > R̂(f) + εf , where εf =
√

ln(1/δf )

2n
.

By Chernoff bound, for each fixed f , Pr[Ef ] ≤ δf . Then R(f) ≤ R̂(f) + εf for all f if the
complements of all events Ef hold simultaneously.

Pr[∀f, R(f) ≤ R̂(f) + εf ] = 1−Pr[∃f, Ef ]
= 1−Pr[∪fEf ]

≥ 1−
∑
f

Pr[Ef ]

≥ 1−
∑
f

δf

To finish the proof, it suffices to set each δf = δ/|F|.

4 VC Dimension
What if |F| is infinite? In this case, we will replace ln(|F|) by some complexity measure of the
class F . We will introduce the Vapnik-Chervonenkis dimension (VC dimension) of F . We say that
F shatters a set of points x1, . . . , xn ∈ X if F realizes all labelings over these n points. The VC
dimension of F is the largest number of points F can shatter:

VCD(F) = max{n ∈ Z : ∃(x1, . . . , xn) ∈ X n,∀(y1, . . . , yn) ∈ {0, 1}n,∃f ∈ F , f(xi) = yi}

Claim 4.1. If F is finite, then
VCD(F) ≤ log(|F|)
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In homework and exam problems, you should prove two things to establish a VC dimension
bound for a function class F is VCD(F): 1) an upper bound showing that no set of more than
VCD(F)+1 points can be shattered by F and 2) a lower bound given by a set of VCD(F) points
that can be shattered by F . A couple examples are in order.

Example 4.2 (Intervals). The class of all intervals on the real line F = {1[x ∈ [a, b]] | a, b ∈ R}
has VC dimension 2.

Example 4.3 (Affine classifier). The class of all intervals on the real line F = {1[〈a, x〉 + b ≥
0] | a ∈ Rd, b ∈ R} has VC dimension d+ 1. Upper bound: In convex analysis, Radon’s theorem
shows that any set of d+2 points in Rd can be partitioned into two disjoint sets whose convex hulls
intersect. Lower bound: the standard basis and the origin.

With VC dimension as a complexity measure, we can obtain a uniform convergence result for
infinite function classes F .

Theorem 4.4 (Uniform convergence over bounded VC class). Suppose that the function class has
bounded VC dimension. Then with probability 1− δ over the i.i.d. draws of (x1, y1), . . . , (xn, yn),
for all f ∈ F ,

R(f) ≤ R̂(f) + Õ

(√
VCD(F) + ln(1/δ)

n

)
where Õ hides some dependences on log(VCD(F)) and log(n).
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