
CSCI 5525 Machine Learning Fall 2019

Lecture 14: Learning Theory (Part 3)
March 2020

Lecturer: Steven Wu Scribe: Steven Wu

1 Uniform Convergence
Previously, we talked about how to bound the generalization error of the ERM output. The key is
to obtain uniform convergence.

Theorem 1.1 (Uniform convergence over finite class). LetF be a finite class of predictor functions.
Then with probability 1− δ over the i.i.d. draws of (x1, y1) . . . (xn, yn), for all f ∈ F

R(f) ≤ R̂(f) +
√

ln(|F|/δ)
2n

We can derive a similar result for the case where |F| is infinite, by essentially replacing
ln(|F|) by some complexity measure of the class F . The complexity measure is called Vapnik-
Chervonenkis dimension (VC dimension) ofF , which is the largest number of pointsF can shatter:

VCD(F) = max{n ∈ Z : ∃(x1, . . . , xn) ∈ X n,∀(y1, . . . , yn) ∈ {0, 1}n,∃f ∈ F , f(xi) = yi}

With VC dimension as a complexity measure, we can obtain a uniform convergence result for
infinite function classes F .

Theorem 1.2 (Uniform convergence over bounded VC class). Suppose that the function class has
bounded VC dimension. Then with probability 1− δ over the i.i.d. draws of (x1, y1), . . . , (xn, yn),
for all f ∈ F ,

R(f) ≤ R̂(f) + Õ

(√
VCD(F) + ln(1/δ)

n

)
where Õ hides some dependences on log(VCD(F)) and log(n).

During lecture 13, we saw two simple example function classes and their VC dimensions.

Example 1.3 (Intervals). The class of all intervals on the real line F = {1[x ∈ [a, b]] | a, b ∈ R}
has VC dimension 2.

Example 1.4 (Affine classifier). The class of all intervals on the real line F = {1[〈a, x〉+ b ≥ 0] |
a ∈ Rd, b ∈ R} has VC dimension d+ 1.

1

We can also obtain VC dimension bound for neural networks, which depends on the choices of
activation functions.

Example 1.5 (Neural networks). Consider the classifier given by neural networks: for each feature
vector x, the prediction is given by

f(x, θ) = sgn [σL (WL(. . .W2σ1(W1x+ b1) + b2 . . .) + bL)]

Let ρ be the number of parameters (weights and biases), L be the number of layers, and m be the
number of nodes. If we use the same activation for all σi, we can obtain:

• Binary activation σ(z) = 1[z ≥ 0], VCD = O(ρ ln ρ).
(See Theorem 4 of this paper for a proof.)

• ReLU activation σ(z) = max(0, z), VCD = O(ρL ln(ρL))
(See Theorem 6 of this paper for a proof.)

Roughly speaking, the VC-dimension of a neural network scales with the number of parameters
defining class F . However, in practice, the number of parameters might exceed the number of
training examples, so the generalization bound derived from VC dimension is often not very useful
for deep nets.

Here is a simple example for which the VC dimension is very different frorm the number of
parameters. Consider, for example, the domain X = R, and the class F = {hθ : θ ∈ R where
hθ : X → {0, 1} is defined by hθ(x) = d0.5 sin(θx)e. It is possible to prove that VCD(F) =∞.

2 Rademacher Complexity
Well, VC dimension is designed for binary classification. How about other learning problems
including multi-class classification and regression? There is actually a more general complexity
measure.

Given a set of examples S = {z1 . . . , zn} and function class F , the Rademacher complexity is
defined as

Rad(F , S) = E
ε
sup
f∈F

1

n

n∑
i=1

εif(zi)

where each ε1, . . . , εn are i.i.d. Rademacher random variables: Pr[εi = 1] = Pr[εi = −1] = 1/2.
Why does Rademacher complexity capture the complexity of a function class? One intuition is
that it captures the ability of F to fit random signs given by the Rademacher random variables. For
any loss function ` : Y × Y and predictor f ∈ F , let ` ◦ f be a function such that for any example
z = (x, y)

` ◦ f(z) = `(y, f(x))

Let the corresponding function class ` ◦ F = {` ◦ f | f ∈ F}. Now we can derive the following
generalization bound using Rademacher complexity.

2

http://www.vision.jhu.edu/teaching/learning/deeplearning18/assets/Sontag-98.pdf
https://arxiv.org/abs/1703.02930

Theorem 2.1. Assume that for all z = (x, y) ∈ X × Y and f ∈ F we have |`(y, f(x)| ≤ c. Let
z1 = (x1, y1), . . . , zn = (xn, yn) be i.i.d. draws from the underlying distribution P . Then with
probability at least 1− δ, for all f ∈ F

R(f) ≤ R̂(f) + 2Rad(` ◦ F , S) + 4c

√
2 ln(4/δ)

n

Moreover, if ` is γ-Lipschitz in the second argument for all y, then Rad(` ◦ F , S) ≤ γRad(F , S),
and so

R(f) ≤ R̂(f) + 2γRad(F , S) + 4c

√
2 ln(4/δ)

n

Note that Rademacher complexity depends on the underlying data distribution. For simple
function classes, we can obtain complexity bounds only by assuming boundedness in the data.

Example 2.2 (Linear predictors). Consider two classes of linear functions:

F1 = {x→ wᵀx : w ∈ Rd, ‖w‖1 ≤ W1}

F2 = {x→ wᵀx : w ∈ Rd, ‖w‖2 ≤ W2}

Let S = (x1, ..., xn) be vectors in Rd.

Rad(F1, S) ≤ (max
i
‖xi‖∞)W1

√
2 log(2d)

n

Rad(F2, S) ≤ (max
i
‖xi‖2)W2

√
1

n

For linear functions, a nice feature of Rademacher complexity is that it picks up explicit depen-
dence on the norm bounds of the weight vectors. In comparison, the VC dimension for the class
of affine functions is just d+ 1.

3

	Uniform Convergence
	Rademacher Complexity

