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In this lecture, we will study an ensemble method called boosting–a general method of convert-
ing rough rules of thumb into highly accurate prediction rule. The typical rules of thumb are given
by decision trees.

Decision Trees
A decision tree is a predictor function f : X → Y , represented by a binary tree in which:

• each tree node is associated with a splitting rule h : X → {0, 1}.

• each leaf node l is associated with a fixed prediction ŷl.

Here is a fun example in Figure 1.

Figure 1: Fun example from Rob Schapire. Left: data; Right: decision tree predictor.

Top-down greedy training algorithm How do you build a decision tree? A typical approach is
the following “top-down” greedy algorithm:

• Initialize a tree with a single leaf node containing all training data.

• While “stopping criterion” is not met:
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– Pick the leaf l and rule h that maximally reduces “uncertainty” measure u:∑
l

w(l)u(Sl)

where w(l) denotes the fraction of examples reaching the leaf l and Sl denote the set of
examples reaching leaf l.

– Split data in l using h, and grow tree accordingly

• Label ŷl of each leaf l is the majority label (for classification) or average label value (for
regression) among the data contained in the leaf.

For this algorithm, we need to define the uncertainty measure u as well as stopping criterion.

Notions of uncertainty (for binary classification). Suppose in a set of examples S, the fraction
of positive examples is p. Then we can define three uncertainty measures.

1. Classification error (for the majority prediction rule):

u(S) = min{p, 1− p}

2. Gini index:
u(S) = 2p(1− p)

3. Entropy:
u(S) = p log(1/p) + (1− p) log(1/(1− p))

Note that both Gini index and rescaled entropy are upper bounds on the classification error. See
Figure 2 for an illustration.

Notion of uncertainty for regression.

u(S) =
1

|S|
∑

(x,y)∈S

(y − ȳS)2 ← Average squared difference from average label

where ȳS =
1

|S|
∑

(x,y)∈S

y ← Average label
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Figure 2: Three standard uncertainty or impurity functions. Image source.

Stopping criteria. Two common choices:

• Stop when the tree reaches a pre-specified size (given by depth or number of nodes). Tree
size is a hyperparamter we need to tune.

• Stop when every leaf is pure, that is the examples in each leaf belong to the same class.
This will often lead to very large trees, which can result in a risk of overfitting. To mitigate
over-fitting, we can perform tree pruning: first, split training data S into two parts S1 and
S2, and then

– Use S1 to grow the tree until all leaves are pure.

– Use S2 to choose a good pruning of the tree: Replace any tree node by a leaf node if it
improves the error on S2 until no more such improvements possible.

Boosting
Boosting combines weak predictor that has say 51% accuracy to form a highly accurate predictor
that say 99% accuracy. It is rooted in learning theory, and works very well in practice (especially
in combination with trees). Here is the general approach:

• take a method for deriving rough rules of thumb

• apply the method to subset of examples

• obtain rule of thumb

• apply to 2nd subset of examples

• obtain 2nd rule of thumb
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• repeat...

Two questions arise:

1. How to choose examples on each round? We should concentrate on “hardest” examples, that
is those misclassified by previous weak rules of thumb.

2. How to combine rules of thumb into single prediction rule? Take weighted majority vote of
rules of thumb.

AdaBoost is an elegant boosting method that implements these ideas. The algorithm takes as
input a training dataset: (x1, y1), . . . , (xn, yn) ∈ X × {±1}:

• Initialize D1 as the uniform distribution over the examples.

• For t = 1, . . . , T :

– Train weak classifier (“rule of thumb”) ht on Dt

– Let εt =
∑

iDt(i)1 [ht(xi) 6= yi] and choose parameter αt

αt =
1

2
ln

(
1− εt
εt

)
– compute new distribution Dt+1: for each example i, the weight is

Dt+1(i) ∝ Dt(i) exp (−αtyiht(xi))

(∝ means “proportional to”, which hides the normalization step.)

• Output final classifier: f̂ : x→ sign (
∑

t αtht(x))

Let’s work through an example (due to Rob Schapire). We will use decision stump of the form
1[xj ≥ θ] as our weak predictors. (Here I am abusing notation to write xj as the j-th coordinate of
x.) Suppose we are given training examples shown in Figure 3. Then Figure 4 shows a visualization
of how AdaBoost updates over rounds, which leads to a final predictor with zero training error (in
Figure 5).

Under some “weak learning” assumption, one can show that the training error goes to zero
exponentially fast.

Theorem 0.1. Suppose the weak learning assumption holds for all t: each ht is better than random
guessing: for some γ > 0,

εt ≤ 1/2− γ

Then the training error
R̂01(f̂) ≤ exp

(
−2γ2T

)
.
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Figure 3: Traning data.
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Figure 4: Adaboost re-weighting over rounds.
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Figure 5: Final predictor with perfect accuracy.
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