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AdaBoost
Let us revisit AdaBoost. The algorithm takes as input a training dataset (x1, y1), . . . , (xn, yn) ∈
X × {±1}, and returns an ensemble predictor by performing:

• Initialize D1 as the uniform distribution over the examples.

• For t = 1, . . . , T :

– Train weak classifier (“rule of thumb”) ht on Dt by minimizing the weighted risk∑
i

Dt(i)1 [h(xi) 6= yi]

– Let εt =
∑

iDt(i)1 [ht(xi) 6= yi] be the weighted error and choose parameter αt

αt =
1

2
ln

(
1− εt
εt

)
We assume that ht is at least as accurate as constant classifiers that always predict 1 or
−1 on all examples, and so εt < 1/2 and αt > 0.

– Compute new distribution Dt+1: for each example i, the weight is

Dt+1(i) ∝ Dt(i) exp (−αtyiht(xi))

(∝ means “proportional to”, which hides the normalization step.)

• Output final classifier: f̂ : x→ sign (
∑

t αtht(x))

Under some “weak learning” assumption, one can show that the training error goes to zero
exponentially fast.

Theorem 0.1. Suppose the weak learning assumption holds for all t: each ht is better than random
guessing: for some γ > 0,

εt ≤ 1/2− γ
Then the training error

R̂01(f̂) ≤ exp
(
−2γ2T

)
.
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Ideas behind AdaBoost
The predictor class AdaBoost selects from is{
x→ sign(f(x)) | f(x) =

T∑
t=1

αtht(x) for some α1, . . . , αT ≥ 0 and h1, . . . , hT ∈ H, T ≥ 1

}

whereH is the weak predictor class (e.g., decision stumps). Recall that one of the surrogate losses
we introduced but haven’t used yet is the exponential loss: `(y, ŷ) = exp(−yif(xi)). AdaBoost
is essentially trying to greedily minimize the empirical exponential loss 1

n

∑
i exp(−yif(xi)). In

particular, let ft =
∑t

τ=1 ατhτ . At round t, the algorithm would like to greedily improve on ft−1
by finding ht and αt to minimize

n∑
i=1

exp (−yift(xi)) =
n∑
i=1

exp (−yift−1(xi)) exp (−yiαtht(xi))

∝
n∑
i=1

Dt(i) exp (−yiαtht(xi))

The last line follows by the definition of Dt:

Dt(i) ∝ Dt−1(i) exp (−yiαt−1ht−1(xi)) ∝ · · · ∝ exp (−yift−1(xi))

Now the problem becomes finding ht and αt to minimize the following quantity:

Zt =
n∑
i=1

Dt(i) exp (−yiαtht(xi))

=
∑

i:yi 6=ht(xi)

Dt(i) exp (αt) +
∑

i:yi=ht(xi)

Dt(i) exp (−αt)

=εt exp (αt) + (1− εt) exp (−αt) (εt is the error of ht)
=εt(exp(αt)− exp(−αt)) + exp(−αt)

Since we only consider αt ≥ 0, then (exp(αt)−exp(−αt)) ≥ 0, so we will pick ht to minimize
the weighted error εt over the distribution Dt. Now when ht (and εt) are fixed, we will further
optimize αt. It can be shown that the optimal choice of αt is

αt =
1

2
ln

(
1− εt
εt

)
.

With this choice, Zt =
√
1− 4γ2t , with γt = 1/2− εt.
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Figure 1: AdaBoost’s resistance to overfitting. Test error doesn’t increase with T . Image taken
from Rob Schapire’s slides.

Resistance to Overfitting
From Theorem 0.1, we know that AdaBoost is extremely good at driving the training error down to
zero, as long as the weak learning assumption holds. Suppose that we run AdaBoost for T rounds,
the final predictor consists of T weak predictors ht’s from the class H. How good is the true
error of the predictor? Standard tools from VC theory would suggest that the generalization error
bound tend to increase with the complexity of the ensemble class, which in this case is roughly
T VCD(H), and so:

R01(f̂) ≤ R̂01(f̂) + Õ

(√
T VCD(H)

n

)
According to this bound, the generalization bound should go up as we increase T . However,
empirically it is observed that larger ensemble tend to have better test error, and so the VC theory
is not quite adequate to explain this.

To explain this, we will consider a margin-based analysis. To define margin, we will consider
the following convex hull co(H) as the set of all mappings that are given by a weighted average of
classifiers fromH:

co(H) =

{
f : f(x) =

T∑
t=1

atht(x)
∣∣ a1, . . . , aT ≥ 0,

T∑
t=1

at = 1 and h1, . . . , hT ∈ H, T ≥ 1

}

Note that this is just normalizing the weight αt by at = αt∑T
t′=1 αt′

, and so the sign of the weighted

sum remain the same. For each f in co(H), the margin of f on each example (xi, yi) is yif(xi),
which is a value in [−1, 1].

Here is a nice slides show that demonstrates how the margin distribution changes during Ad-
aBoost training: link.
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Theorem 0.2 (Margin-based generalization bound). Let P be a distribution over X × {±1}, and
let S = {(x1, y1), . . . , (xn, yn)} be i.i.d. draws from P . Suppose that H is a finite class. Then for
any δ > 0, with probability 1− δ over the random draws from the examples, for all f ∈ co(H)

Pr(x,y)∼P [yf(x) ≤ 0] ≤ 1

n

n∑
i=1

1[yif(xi) ≤ θ] +O

(√
log |H|
nθ2

log

(
nθ2

log |H|

)
+

log(1/δ)

n

)

for all θ >
√

ln(|H|)/(4n)

We can also obtain similar results for function classH with bounded VC dimension.
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