
CSCI 5525 Machine Learning Fall 2019

Lecture 18: Bagging and Random Forest
April 2020

Lecturer: Steven Wu Scribe: Steven Wu

Revisit bias variance tradeoff
Again, we are given a dataset D = {(x1, y1), . . . , (xn, yn)}, drawn i.i.d. from some distribution
P (X, Y). Recall the following definitions from the last lecture:

Expected Label for x.
ȳ(x) = EP [Y | X = x]

Suppose we use some machine learning algorithm A that takes the data set D as input and
outputs a predictor, denoted fD = A(D). We can define:

Expected Test Error for fD.
E(x,y)∼P

[
(fD(x)− y)2

]
.

Now we should also take into account that the data set D is also drawn randomly from P , and
so there is randomness in the predictor produced by A as well.

Expected Classifier for a given algorithm A.

h̄ = ED∼Pn [fD]

We can also use the fact that fD is a random variable to compute the expected test error only
given A, taking the expectation also over D.

Expected Test Error given A.
E(x,y)∼P

D∼Pn

[
(fD(x)− y)2

]
Now recall the Bias / Variance decomposition:

E[(fD(x)− y)2]︸ ︷︷ ︸
Error

= E[(fD(x)− f̄(x))2]︸ ︷︷ ︸
Variance

+E[(f̄(x)− ȳ(x))2]︸ ︷︷ ︸
Bias

+E[(ȳ(x)− y)2]︸ ︷︷ ︸
Noise

Now we will introduce a method for reducing the variance term.

1

Bagging (Bootstrap Aggregating) [Breiman 96]
To reduce the variance, we want fD → f̄ . Ideally, we want to use the law of large numbers and
obtain m independent training sets D1, D2, ..., Dm drawn from P n. Train a classifier on each one
and average result:

f̂ =
1

m

m∑
i=1

fDi
→ f̄

This average of multiple classifiers is another ensemble of classifiers. When m is sufficiently large,
we can show that f̂ → f̄ , and so the variance also vanishes:

E[(f̂(x)− f̄(x))2]→ 0

However, we don’t have m data sets D1,, Dm, we only have the one training dataset D.

Bagging The idea is to simulate drawing from P by drawing from the training set D: sample
m data sets D1, . . . , Dm from D with replacement, such that |Dj| = |D|. For each Dj train a
classifier hj() The final predictor is given by the bagged predictor :

h(x) =
1

m

m∑
j=1

hj(x)

Advantages of Bagging

• It is easy to implement, and it can work with any models.

• It reduces variance, so it is often used along with predictors with high variance, e.g., large
decision trees.

• Since bagging produces many predictors, you obtain a mean and variance among the predic-
tions given by the predictors. One can use the variance term to quantify uncertainty.

• Bagging provides the so-called out-of-bag error, which is an unbiased estimate of the test
error. Observe that each training point (xi, yi) ∈ D was not chosen for certain sets Dj ,
(xi, yi) can be viewed as a test example for the corresponding predictors hj .

More formally, for each training point (xi, yi) ∈ D let Si = {j|(xi, yi) /∈ Dj}, that is Si is
a set of all the training sets Dk that do not contain (xi, yi). Consider the following average
predictor:

h̃i(x) =
1

|Si|
∑
k∈Si

hk(x).

The out-of-bag error is then defined as:

ErrOOB =
1

n

∑
(xi,yi)∈D

`(yi, h̃i(xi)).

Hence, bagging provides an estimate for the test error without using a test set!

2

Random Forest
Random forest is an algorithm we obtain by applying bagging to decision trees:

• Sample m data sets D1, . . . , Dm from D with replacement.

• For each Dj train a full decision tree hj() with one small modification: before each split
randomly subsample k ≤ d features and only consider these for your split.

• The final classifier is h(x) = 1
m

∑m
j=1 hj(x).

Subsampling features. The subsampling of the features for each split helps decorrelate the set of
decision trees. This can be useful because intuitively we want the decision trees to make mistakes
over different regions and so they can complement each other when we the average. The size of
the feature set for each split is a hyperparameter. The author of random forest made the following
suggestions on k. For classification, the default value for k is

√
d and the minimum node size is

one. For regression, the default value for k is d/3.

Sample splitting. Here is a variant of random forest: for each j ∈ [m], split each training set Dj

into two partitions Dj = D1
j ∪D2

j . Build the tree on D1
j and estimate the leaf labels on D2

j . During
the process of tree building, the algorithm ensures that each leaf has only a single point in D2

j in it.
This helps reduces biases of the each decision tree.

3

