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We have thus far focused on supervised learning. The goal there is somewhat clear: we want
to find a predictor f̂ based on a training data set {(x1, y1), . . . , (xn, yn)} such that f̂(x) matches y
on most instances (x, y).

Now we will switch over to unsupervised learning, where the learner only observes a collec-
tion unlabeled examples x1, . . . , xn. There are no target labels. The objectives for unsupervised
learning can be quite diverse. For example, we might want to encode the data in some compact
representation (e.g., lower-dimensional space), recover latent structure (e.g., clusters, subspace) in
the data, or extract features for subsequent supervised learning tasks. We will study PCA as our
first example of unsupervised learning.

Principal Component Analysis
SVD Let us first recall how singular value decomposition (SVD) works. In the lectures on linear
regression, we study the “thin” version of SVD. Here we will state the “full” factorization of the
SVD. Given any matrix M ∈ Rn×d, we want to factorize the matrix as M = USV ᵀ, such that

• r is the rank of the matrix M ;

• U ∈ Rn×n is orthonormal, that is UᵀU = In;

• V ∈ Rd×d is orthonormal, that is V ᵀV = Id;

• S ∈ Rn×d is a rectangular diagonal matrix with entries Sii = si and Sij = 0 for all i 6= j,
where (s1, . . . , sr, 0, . . . , 0) such that s1 ≥ s2 ≥ s3 . . . denote the ordered sequence of
singular values.

We could also express the factorization as a sum M =
∑r

i=1 siuiv
ᵀ
i , where each ui is a column

vector for U and each vi is a column vector for V . Note that {ui}ri=1 spans the column space of M
and {vi}ri=1 spans the row space of M .

Truncated SVD For any k ≤ r, let Uk ∈ Rn×k be the matrix given by the first k columns of U ,
Vk ∈ Rd×k be the matrix given by the first k columns of V , and Sk = diag(s1, . . . , sk). This gives
the following factorization restricted to the top-k space:

Mk = UkSkVk =
k∑

i=1

siuiv
ᵀ
i

Note that when k = r, this recovers the thin SVD.
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PCA. The problem of principal component analysis aims to solve the following optimization
problem: given as input a data matrix X ∈ Rn×d, find an encoder E and decoder D to minimize
the following reconstruction error:

min
D∈Rk×d,E∈Rd×k

‖X −XED‖2F (1)

where ‖ · ‖F denotes the Frobenius norm: for any matrix A,

‖A‖F =

√∑
(i,j)

A2
ij =

√
tr(AᵀA)

The PCA method solves the problem with the following procedure: compute X = USV ᵀ, then
return encoder E = Vk, decoder D = V ᵀ

k , encoded data XVk = UkSk ∈ Rn×k, and decoded data
XVkV

ᵀ
k . Note that VkV

ᵀ
k ∈ Rd×d performs orthogonal projection onto subspace spanned by Vk.

Analysis
Why does the PCA method solve the problem in (1)? We will prove the following fact, which will
be useful for analyzing the problem in (1).

Fact 0.1. Let X ∈ Rn×d and k ≤ r =rank(X).

min
M∈Rd×d rank(M)=k

‖X −XM‖2F = min
D∈Rk×d,E∈Rd×k

‖X −XED‖2F = min
D∈Rd×k,DᵀD=I

‖X −XDDᵀ‖2F

Proof. Note that feasible sets have the three minimization problems have the following relation-
ship:

{M ∈ Rd×d : rank(M) = k} ⊇ {ED : E ∈ Rd×k, D ∈ Rk×d}
⊇ {DDᵀ : D ∈ Rd×k, DᵀD = Ik}

Since the three minimization problems are increasingly constrained, we have

min
M∈Rd×d rank(M)=k

‖X −XM‖2F ≥ min
D∈Rk×d,E∈Rd×k

‖X −XED‖2F ≥ min
D∈Rd×k,DᵀD=I

‖X −XDDᵀ‖2F

Thus, to establish the stated equality, it suffices to show

min
D∈Rk×d,DᵀD=Ik

‖X −XDDᵀ‖2F ≤ min
M∈Rd×d rank(M)=k

‖X −XM‖2F

Consider any M ∈ Rd×d. With slight abuse of notations, we will also write down the SVD of M
as USV ᵀ with rank(M) ≤ k. We can write

‖X −XM‖2F = ‖X −XVkV
ᵀ
k +XVkV

ᵀ
k −XM‖2F

= ‖X −XVkV
ᵀ
k ‖

2
F + ‖XVkV

ᵀ
k −XM‖2F + 2tr ((X −XVkV

ᵀ
k )

ᵀ(XVkV
ᵀ
k −XM))
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If we can show that the trace term is zero, then the above implies

‖X −XM‖2F ≥ ‖X −XVkV
ᵀ
k ‖

2
F ≥ min

D∈Rd×k,DᵀD=Ik
‖X −XDDᵀ‖2F

which will complete the proof.
Now we show that the trace term is zero.

tr ((X −XVkV
ᵀ
k )

ᵀ(XVkV
ᵀ
k −XM))

=tr ((I − VkV
ᵀ
k )

ᵀXᵀ(X −XUkSkV
ᵀ
k )VkV

ᵀ
k )

=tr (Xᵀ(X −XUkSkV
ᵀ
k )VkV

ᵀ
k (I − VkV

ᵀ
k )

ᵀ) (cyclic property of trace)

Let us focus on the last two factors:

(I − VkV
ᵀ
k )

ᵀVkV
ᵀ
k =

(
d∑

j=1

vjv
ᵀ
j −

k∑
j=1

vjv
ᵀ
j

)
k∑

j=1

vjv
ᵀ
j = 0

Thus, tr ((X −XVkV
ᵀ
k )

ᵀ(XVkV
ᵀ
k −XM)) = 0.

The fact above suggests that it suffices to solve the following special case of the “encode-
decode” problem with the same matrix D:

min
D∈Rd×k,DᵀD=I

‖X −XDDᵀ‖2F (2)

Furthermore, since

‖XDDᵀ‖2F = tr((XDDᵀ)ᵀ(XDDᵀ)) = tr((XD)ᵀ(XDDᵀD)) = tr((XD)ᵀ(XD)) = ‖XD‖2F
Then the objective can be further re-written as

‖X −XDDᵀ‖2F = ‖X‖2F − 2tr((XDDᵀ)ᵀX) + ‖XDDᵀ‖2F
= ‖X‖2F − 2tr(DᵀXᵀXD) + ‖XD‖2F
= ‖X‖2F − ‖XD‖2F

Thus, (2) is equivalent to

min
D∈Rd×k,DᵀD=I

‖X‖2F − ‖XD‖2F ⇔ max
D∈Rd×k,DᵀD=I

‖XD‖2F

Finally, it can be shown that

max
D∈Rd×k,DᵀD=I

‖XD‖2F = ‖XVk‖2F =
k∑

i=1

s2i

where Vk from the truncated SVD of X .

PCA example. In this famous paper, the authors performed PCA over the genome data of 1,387
Europeans, and show that the structure of the projected data looks remarkably like the geographic
map of Europe. See the Figure below.
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735096/


4


