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Principal Component Analysis

Principal component analysis aims to solve the following optimization problem: given as input a
data matrix X € R™*?, find an encoder F and decoder D to minimize the following reconstruction
error:
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where || - || » denotes the Frobenius norm: for any matrix A,
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The PCA method solves the problem with the following procedure: compute X = USV'T, then
return encoder E = Vj,, decoder D = V}I, encoded data X'V}, = U, Sy, € R™** and decoded data
XV, V. Note that V;,V;] € R™? performs orthogonal projection onto subspace spanned by V.

Last lecture, we showed that the optimization problem can be re-written as

min |X — XED|J3 = min | X — XDD7|)%
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We also showed that this new objective can be further decomposed
|X = XDDT|[5 = | X7 — IX DIl

This means,

min | X - XDD'||3 <  max || XD|3%
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Finally, the objective value of the maximization problem is singular values squared.
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where sq, ..., s are the top singular values of X.



Centered PCA. Typically, before running PCA, we replace each z; with z; = z; — T, where
T = 23" ;. The objective then becomes

k
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Note that £ (X'De;)T(X'De;) corresponds to the variance on the i-th coordinate after the projec-

tion. Therefore, PCA is maximizing the resulting per-coordinate variances.

Power method. How to compute the SVD of X € R"*?? We can use the power method to first

compute v, v and s;. The idea is to compute the top eigenvector and eigenvalue of the matrix
XTX:

e Start with a random vector yo ~ N(0, 1)

e Fort=1,...,T":
Yr < XTX Yy

vy < yr/||yrl|2: the first column of V" and also the top eigenvector of XT.X

s1 < || Xv1||2 top singular value
® U < XU1/81

To compute the remainder of triplets (u;, s;, v;), repeat the same for the residual matrix X — squqv7.
Note that we can also apply the power method to the matrix X X T for computing its top eigenvector,
which is u;. This will be useful for the next kernel PCA method.

Kernel PCA

We can find the “high variance” directions in a richer feature space by first apply some feature
mapping ¢: R? — R™ and then runs PCA over the transformed data. Let ® € R™ ™ such that
each row of ® is given by ¢(x;). Let k(-,-) be the kernel such that k(x,y) = ¢(z)7¢(y). Kernel
PCA then does the following:

e Compute the Gram matrix G = ®PT and the centered Gram matrix

G = (P — ED)(®— ED)T
= OPT — EDPT — GOTE + EODTE
=G - EG—GE + EGE

where E € R™" is the matrix with all entries of 1/n.

e Find the top k eigenvectors of G with normalization: call it A € R"**
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Original data

A 21 1OKA 7181910

Data corrupted with Gaussian noise
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Result after linear PCA

4 B SIYE N 7181710

Result after kernel PCA, Gaussian kernel

LA SEYIZ RG] 7181710

Figure 1: Denoising application of kernel PCA on the digits data set. Image from Haipeng Luo’s
lecture slide. Another application here.

e Construct the encoded dataset
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https://pdfs.semanticscholar.org/d7fc/f1c3e539a37dc6fce44132edf9632793587b.pdf

