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Principal Component Analysis
Principal component analysis aims to solve the following optimization problem: given as input a
data matrix X ∈ Rn×d, find an encoder E and decoder D to minimize the following reconstruction
error:

min
D∈Rk×d,E∈Rd×k

‖X −XED‖2F (1)

where ‖ · ‖F denotes the Frobenius norm: for any matrix A,

‖A‖F =

√∑
(i,j)

A2
ij =

√
tr(AᵀA)

The PCA method solves the problem with the following procedure: compute X = USV ᵀ, then
return encoder E = Vk, decoder D = V ᵀ

k , encoded data XVk = UkSk ∈ Rn×k, and decoded data
XVkV

ᵀ
k . Note that VkV

ᵀ
k ∈ Rd×d performs orthogonal projection onto subspace spanned by Vk.

Last lecture, we showed that the optimization problem can be re-written as

min
D∈Rk×d,E∈Rd×k

‖X −XED‖2F = min
D∈Rd×k,DᵀD=I

‖X −XDDᵀ‖2F

We also showed that this new objective can be further decomposed

‖X −XDDᵀ‖2F = ‖X‖2F − ‖XD‖2F

This means,
min

D∈Rd×k,DᵀD=I
‖X −XDDᵀ‖2F ⇔ max

D∈Rd×k,DᵀD=I
‖XD‖2F

Finally, the objective value of the maximization problem is singular values squared.

max
D∈Rd×k,DᵀD=I

‖XD‖2F = ‖XVk‖2F =
k∑

j=1

s2j

where s1, . . . , sk are the top singular values of X .
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Centered PCA. Typically, before running PCA, we replace each xi with x′i = xi − x, where
x = 1

n

∑n
i=1 xi. The objective then becomes

‖X ′D‖2F = tr ((X ′D)ᵀ(X ′D)) =
k∑

i=1

(X ′Dei)
ᵀ(X ′Dei)

Note that 1
n
(X ′Dei)

ᵀ(X ′Dei) corresponds to the variance on the i-th coordinate after the projec-
tion. Therefore, PCA is maximizing the resulting per-coordinate variances.

Power method. How to compute the SVD of X ∈ Rn×d? We can use the power method to first
compute v1, u1 and s1. The idea is to compute the top eigenvector and eigenvalue of the matrix
XᵀX:

• Start with a random vector y0 ∼ N (0, Id)

• For t = 1, . . . , T :
yt ← XᵀX yt−1

• v1 ← yT/‖yT‖2: the first column of V and also the top eigenvector of XᵀX

• s1 ← ‖Xv1‖2 top singular value

• u1 ← Xv1/s1

To compute the remainder of triplets (ui, si, vi), repeat the same for the residual matrixX−s1u1vᵀ1 .
Note that we can also apply the power method to the matrixXXᵀ for computing its top eigenvector,
which is u1. This will be useful for the next kernel PCA method.

Kernel PCA
We can find the “high variance” directions in a richer feature space by first apply some feature
mapping φ : Rd → Rm and then runs PCA over the transformed data. Let Φ ∈ Rn×m such that
each row of Φ is given by φ(xi). Let k(·, ·) be the kernel such that k(x, y) = φ(x)ᵀφ(y). Kernel
PCA then does the following:

• Compute the Gram matrix G = ΦΦᵀ and the centered Gram matrix

G = (Φ− EΦ)(Φ− EΦ)ᵀ

= ΦΦᵀ − EΦΦᵀ − ΦΦᵀE + EΦΦᵀE

= G− EG−GE + EGE

where E ∈ Rn×n is the matrix with all entries of 1/n.

• Find the top k eigenvectors of G with normalization: call it A ∈ Rn×k
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Figure 1: Denoising application of kernel PCA on the digits data set. Image from Haipeng Luo’s
lecture slide. Another application here.

• Construct the encoded dataset

(Φ− EΦ)(Φ− EΦ)ᵀA = GA
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https://pdfs.semanticscholar.org/d7fc/f1c3e539a37dc6fce44132edf9632793587b.pdf

