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Maximum Likelihood Estimation
Now we will switch over to a different unsupervised learning problem that aims to model the un-
derlying probability distribution P from which the observed examples are drawn. As we discussed
before in the lecture on logistic regression, there is a general principle called maximum likelihood
estimation (MLE):

• Pick a set of probability models for the data: P := {pθ : θ ∈ Θ}.

• Given samples x1, . . . , xn, pick the model that maximized the likelihood

max
θ∈Θ

L(θ) = max
θ∈Θ

ln
n∏
i=1

pθ(xi) = max
θ∈Θ

n∑
i=1

ln pθ(xi)

Example 0.1 (Coin flips). Heads: xi = 1 and tails xi = 0. The Bernoulli distribution has the
parameter–the bias or the probability of heads θ ∈ [0, 1]. We can write

pθ(xi) = θxi(1− θ)1−xi

Let H =
∑

i xi and T =
∑

i(1− xi) be the number of heads and tails.

L(θ) =
n∑
i=1

(xi ln θ + (1− xi) ln(1− θ)) = H ln θ + T ln(1− θ).

By using the first-order condition, we derive that the solution is

θ =
H

T +H
=
H

n
.

Gaussian Mixture Model
Gaussian mixture model (GMM) is the following generative model:

• Draw a latent class Y such that Pr[Y = j] = πj

• Then draw X conditioned on Y : X | Y = j ∼ N (µj,Σj).
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Figure 1: Statistician Karl Pearson wanted to understand the distribution of the ratio between
forehead breadth and body length for crabs. He fit a mixture of two Gaussians. Figure due to Peter
Macdonald.
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The parameter θ = ((π1, µ1,Σ1), . . . , (πk, µk,Σk)) and the probability density at each point x
is

pθ(x) =
k∑
j=1

pµj ,Σj
(x) πj

where pµj ,Σj
denotes the multivariate Gaussian density function:

pµj ,Σj
(x) =

1√
(2π)ddet(Σj)

exp

(
−1

2
(x− µj)ᵀΣj(x− µj)

)
The MLE problem is the maximization of

L(θ) =
n∑
i=1

ln

(
k∑
j=1

pµj ,Σj
(xi) πj

)
=

n∑
i=1

ln

[
k∑
j=1

πj√
(2π)ddet(Σj)

exp

(
−1

2
(x− µj)ᵀΣ−1

j (x− µj)
)]

Unlike the MLE problem for coin flips, we cannot obtain a closed-form solution here. In fact, MLE
for GMM is known to be NP-hard, but we will introduce a well-known heuristic in this lecture.

Expectation and Maximization
We will introduce the method of expectation and maximization (EM) for solving the MLE prob-
lem for GMM. We will introduce a set of auxiliary variables in matrix form R ∈ Rn×k :=
R ∈ [0, 1]n×k : R1k = 1n, such that each Rij that defines the probability that each example xi
to the j-th Gaussian distribution. Let us define augmented likelihood as

L(θ, R) =
n∑
i=1

k∑
j=1

Rij ln

(
k∑
j=1

pθ(xi, yi = j)

Rij

)

Note that we can write the original likelihood function as:

L(θ) =
n∑
i=1

ln (pθ(xi))

=
n∑
i=1

1 ln (pθ(xi))

=
n∑
i=1

k∑
j=1

pθ(yi = j | xi) ln (pθ(xi))

=
n∑
i=1

k∑
j=1

pθ(yi = j | xi) ln

(
pθ(xi, yi = j)

pθ(yi = j | xi)

)
(Bayes rule: pθ(x) pθ(y|x) = pθ(x, y))
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This means, if we set Rij = pθ(yi = j | xi), then L(θ, R) = L(θ).
The EM method performs the following alternating optimization over θ and R to maximize

augmented likelihood function L(θ, R). the algorithm first initialize (π0)j = 1/k, (Σ0)j = I , and
(µ0)j randomly. Then over iterations t = 1, . . . T :

• E-step: set (Rt)ij := pθt−1(yi = j|xi). This means

(Rt)ij = pθt−1(yi = j | xi) =
pθt−1(yi = j, xi)

pθt−1(xi)
=

πjpµj ,Σj
(xi)∑k

l=1 πlpµl,Σl
(xi)

(We omit the subscript t on the rigthmost expression.)

• M-step: set θt = arg maxθ∈Θ L(θ;Rt)

πj =

∑n
i=1 Rij∑n

i=1

∑k
l=1Ril

=

∑n
i=1 Rij

n
(1)

µj =

∑n
i=1Rijxi∑n
i=1 Rij

=

∑n
i=1Rijxi
nπj

(2)

Σj =

∑n
i=1Rij(xi − µj)(xi − µj)ᵀ

nπj
(3)

(We omit all the subscripts t above.)

By using first-order condition and also Lagrange duality, one can show that the choices in (1),
(2) and (3) solve the problem of arg maxθ∈Θ L(θ;Rt). We will leave it as an exercise.

Theorem 0.2. Let (R0, θ0) ∈ Rn×k ×Θ be initialized arbitrarily. Let (Rt, θt) by given by EM:

(Rt)ij := pθt−1(y = j | xi) θt := arg max
θ∈Θ

L(θ;Rt)

Then for all t,

L(θt;Rt) ≤ max
R∈Rn×k

L(θt;R) = L(θt;Rt+1) = L(θt) ≤ L(θt+1;Rt+1) (4)

In particular, this implies L(θt) ≤ L(θt+1).

Proof. Let us first prove the easy steps in (4) from left to right.

• First, L(θt;Rt) ≤ maxR∈Rn×k L(θt;R) follows from maximization over R.

• L(θt;Rt+1) = L(θt) follows from the definition of Rt+1 and augmented likelihood.

• L(θt) ≤ L(θt+1;Rt+1) follows from maximization over θ.
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Now we just need to show maxR∈Rn×k L(θt;R) = L(θt;Rt+1). We will rely on a useful tool
from convex analysis called the Jensen’s inequality: for any concave function f : Rd → R, any
a1, . . . , ak, and any weights λ1, . . . , λk ≥ 0 such that

∑k
j=1 λj = 1, the following inequality holds

m∑
j=1

λjf(aj) ≤ f

(
m∑
j=1

λjaj

)
Using this tool, we can bound the augmented likelihood as follows

L(θt, R) =
n∑
i=1

k∑
j=1

Rij ln
pθt(xi, yi = j)

Rij

≤
n∑
i=1

ln

(
k∑
j=1

Rij
pθt(xi, yi = j)

Rij

)
(Jensen’s inequality)

≤
n∑
i=1

ln

(
k∑
j=1

pθt(xi, yi = j)

)

≤
n∑
i=1

ln (pθt(xi)) = L(θt) = L(θt, Rt+1)

This means L(θt, R) ≤ L(θt, Rt+1) for any R, and so maxR L(θt, R) = L(θt, Rt+1).

Choosing the number k. The number k is another hyperparameter. We can follow the same
approach in supervised learning, and tune it with a validation set. As we increase k, we will
gradually increase the log-likelihood on the training set, but the log-likehood on the validation set
will stop increasing at some point.

k-Means Clustering A related unsupervised learning method is k-means clustering. We won’t
go into details in this course. k-means is another alternating optimization method that aims to
minimize the following k-means objective

φ(µ1, . . . , µk) =
n∑
i=1

min
j
‖xi − µj‖2

The method introduces an “hard” assigment matrix A ∈ {0, 1}n×k, and alternatively optimizes A
and µj’s:

• For each xi, define µ(xi) to be a closest center:

‖xi − µ(xi)‖ = min
j
‖xi − µj‖

• For each i, set Aij = 1[µ(xi) = µj].

k-means can also provide initialization for the EM method.
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