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Maximum Likelihood Estimation

Now we will switch over to a different unsupervised learning problem that aims to model the un-
derlying probability distribution P from which the observed examples are drawn. As we discussed
before in the lecture on logistic regression, there is a general principle called maximum likelihood
estimation (MLE):

e Pick a set of probability models for the data: P := {py : 0 € O}.

e Given samples x4, . .., x,, pick the model that maximized the likelihood

L(6) = 1 ; 1 i
Igleaex = max ang (x;) Igleaécz; n pe(z;)

Example 0.1 (Coin flips). Heads: x; = 1 and tails v; = 0. The Bernoulli distribution has the
parameter—the bias or the probability of heads 6 € [0, 1]. We can write

palis) = 67(1 — )~
Let H=  x;andT =) _,(1 — x;) be the number of heads and tails.

L(0) = zn:(xZ Inf+ (1 —xz;)In(l —0)) = Hlnfd + T'ln(1 — 0).

=1

By using the first-order condition, we derive that the solution is

Gaussian Mixture Model

Gaussian mixture model (GMM) is the following generative model:
e Draw a latent class Y such that Pr[Y = j| = ;

e Then draw X conditionedonY: X | Y = j ~ N (p;,%;).
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Figure 1: Statistician Karl Pearson wanted to understand the distribution of the ratio between
forehead breadth and body length for crabs. He fit a mixture of two Gaussians. Figure due to Peter
Macdonald.



The parameter 0 = ((7q, 41, %1), - - -, (7k, fx, 21 )) and the probability density at each point z

is
k
1) =) Py, (2)w
j=1
where p,,; ;. denotes the multivariate Gaussian density function:

1 1 T (1 — 11
Puyz, () = 2nidet(s,) ¥ <_§(x ) TE( “J)>

The MLE problem is the maximization of

= Zln (Zpﬂj,xj( > Zln [Z \/W < 1(x — 1) 55 o - Nj))]

Unlike the MLE problem for coin flips, we cannot obtain a closed-form solution here. In fact, MLE
for GMM is known to be NP-hard, but we will introduce a well-known heuristic in this lecture.

Expectation and Maximization

We will introduce the method of expectation and maximization (EM) for solving the MLE prob-
lem for GMM. We will introduce a set of auxiliary variables in matrix form R € R™* .=
R €[0,1]"*%: R1), = 1,,, such that each R;; that defines the probability that each example z;
to the 7-th Gaussian distribution. Let us define augmented likelihood as

ZZRwln (Zp9 il L )

=1 j=1

Note that we can write the original likelihood function as:

= Zlﬂ (po(x:))
= Z Ln (pg(2:))

ZZZpe i =7 | ) In (pa(:))
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This means, if we set R;; = pg(y; = j | =;), then L(6, R) = L(6).

The EM method performs the following alternating optimization over # and R to maximize
augmented likelihood function L(6, R). the algorithm first initialize (m); = 1/k, (¥¢); = I, and
(t0); randomly. Then over iterations ¢t = 1,... 7"

o E-step: set (R;);; := po, , (y; = j|z;). This means

) Do, (Yi = J, ;) ;P r-,E-(%‘)
(R)ij = po_ (yi = J | 1) = —— A = k] e
Po, 4 (ZL"Z) 21:1 TP, (.731)

(We omit the subscript ¢ on the rigthmost expression.)
e M-step: set 6, = arg maxgyco L(0; R;)
" R " Ry
Z’L—l J _ Z =1 J (1)

T = n k -
D im1 21 B "
i Rijs i Rijs
py = Zz’nl = Ziz - 2)
i=11ij nm;
S iy Rij(ai — i) (i — py)" 3)

mrj
(We omit all the subscripts ¢ above.)

By using first-order condition and also Lagrange duality, one can show that the choices in (T)),
(2) and (3) solve the problem of arg maxgce L(6; R;). We will leave it as an exercise.

Theorem 0.2. Let (Ry, 0y) € R™** x O be initialized arbitrarily. Let (Ry,0;) by given by EM:
(Be)ij = poa(y=Jlzi) 0 :=argmax L(6; R)
Then for all t,

L(0y; Ry) < max L(0; R) = L(0; Riqr) = L(0;) < L(Oy41; Riya) “4)

ReRnxk
In particular, this implies L(0;) < L(041).
Proof. Let us first prove the easy steps in (d)) from left to right.
e First, L(0;; R;) < maxgepnxx L(0y; R) follows from maximization over R.
o L(6:; Riy1) = L(6;) follows from the definition of R, ; and augmented likelihood.

o L(0;) < L(0441; Ryy1) follows from maximization over 6.



Now we just need to show maxpcrnxr L(0:; R) = L(6;; Rii1). We will rely on a useful tool
from convex analysis called the Jensen’s inequality: for any concave function f: RY — R, any
ai,...,ag, and any weights Ay, ..., Ay > 0 such that 25:1 A; = 1, the following inequality holds

ZAjf(aj) <f (Z Aj%)

Using this tool, we can bound the augmented likelihood as follows

n

k .
L(0,, R) = Z R;; ln%
1)

i=1 j=1

n k .
< Z In (Z R;; W) (Jensen’s inequality)
i=1 j=1 g
n k
< Zln (Zpet(x’iayi = ]))
i=1 j=1

< Zlﬂ (po, (1)) = L(6:) = L(6, Re+1)
=1
This means L(6;, R) < L(0;, Ryy1) for any R, and so maxg L(0;, R) = L(0;, Ri41). O

Choosing the number k. The number £ is another hyperparameter. We can follow the same
approach in supervised learning, and tune it with a validation set. As we increase k, we will
gradually increase the log-likelihood on the training set, but the log-likehood on the validation set
will stop increasing at some point.

k-Means Clustering A related unsupervised learning method is k-means clustering. We won’t
go into details in this course. k-means is another alternating optimization method that aims to
minimize the following k-means objective

Ppa, - oo i) = ijin i — ]|
=1

The method introduces an “hard” assigment matrix A € {0, 1}"**, and alternatively optimizes A
and p;’s:

e For each x;, define p(z;) to be a closest center:

|zi — () || = mjin |zi — ps]]

e For each i, set A;; = 1{u(z;) = ;).

k-means can also provide initialization for the EM method.
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