
CSCI 5525 Machine Learning Fall 2019

Lecture 22 & 23: Variational Autoencoders
April 2020

Lecturer: Steven Wu Scribe: Steven Wu

Now we will study how to leverage generative models to sample from a distribution. We will
leverage neural networks in the following way:

• First sample a latent variable z from distributiion µ, that is easy to sample from. For example,
µ can be the uniform distribution over [0, 1] or the Gaussian distribution.

• Then pass the latent variable through a neural network g and output g(z).

In this lecture, we will cover one of the most popular generative network method–variational
autoencoder (VAE).

Autoencoder Let us first talk about what an autoencoder is. Well, in fact, you have already seen
an autoencoder at this point. A special case is just the PCA (and also kernel PCA), which gives the
optimal linear encoding/decoding: Given X = USV ᵀ and and k ≤ r,

min
E∈Rd×k,D∈Rk×d

‖X −XED‖2F = ‖X −XVkV ᵀ
k ‖

2
F

But we can also have encoders and decoders that are not linear mappings. Let encoders E and
decoders D denote families of deep networks from Rd to Rk and from Rk to Rd

min
f∈E,g∈D

n∑
i=1

‖xi − g(f(xi))‖22

This is called an autoencoder, which deterministically map each example xi to a latent code zi,
back to some approximation of xi. We say that Rk is the latent space, and f(x) ∈ Rk is latent
representation of x.

Variational Autoencoder (VAE)
We will now leverage the idea of autoencoder to build generative models. Intuitively, we should
take the decoder g from an autoencoder as our generative network, which is a mapping from a
low-dimensional latent space Rk to the example space Rd.

In particular, suppose we have a sample x1, . . . , xn drawn from some distributioin P . We want
to find g so that g(zi) ≈ xi for each i, where each zi is drawn from a Gaussian distribution. VAE
construct a distribution for each zi based on each xi. The method runs over iterations, and in each
iteration does the following:

1

1. Encode each example into Gaussian mean-variance parameters (µi,Σi)← f(xi).

2. Sample latent variable from Gaussian: zi ∼ N(µi,Σi).

3. Decode x̂i = g(zi).

4. Taking a gradient descent step (or any other optimization method) to further minimize the
VAE objective

n∑
i=1

`(xi, x̂i) + λKL
(
N (µi, σ

2
i I),N (0, I)

)
where `(xi, x̂i) is “reconstruction error”. For example, `(xi, x̂i) = ‖xi − x̂i‖22. We will go
into the details of the gradient update step in a bit.

In the VAE objective, KL denotes KL divergence: for any two distributions p and q,

KL(p||q) =

∫
p(z) ln

p(z)

q(z)
dz

KL divergence is a dissimilarity measure between distributions, with two important properties:

• KL(p||q) ≥ 0 for any p, q.

• KL(p||q) = KL(q||p) if and only if p = q.

KL divergence encourages the individual distributionsN (µi,Σi) to be close to the distribution
N (0, I). This is useful becauseN (0, I) is the “source” distribution for the generative models–that
is, we output g(z) with z ∼ N (0, I). The smaller the KL divergence is, the closer this sampling
has to approximate the training distribution.

Derivation from Variational Inference
VAE is based on ideas from variatioinal inference (VI), which is a popular method to perform
approximate inference in probabilistic models. We won’t get into the details of VI here, but we
will discuss the relevant ideas that lead to VAE. Let P = {pθ | θ ∈ Θ} be a family of probability
distributions over observed and latent variables x and z. Given a set of observed variables S =
{x1, . . . , xn}, we would like to find a distribution in P to minimize:

min
p∈P

KL(p̂S||p) = min
p∈P

∑
x∈S

p̂S(x) ln
p̂S(x)

p(x)

where p̂S denotes the empirical distribution over the data set. Note that
∑

x∈S p̂s(x) ln ps(x) does
not depend on the choice of p. Thus, the minimization is equivalent to the following maximization
problem:

max
p∈P

∑
x∈S

p̂S(x) ln p(x)⇔ max
p∈P

∑
xi∈S

ln p(xi)⇔ max
p∈P

∑
xi∈S

ln

∫
p(xi, z)dz

2

observed xlatent z

Figure 1: Graphical model with latent variable

Thus, minimizing the KL divergence objective is the same as maximizing log-likelihood. The
problem above is typically intractable for generative models with high-dimensional z, since it
involves conputing an integral over all z’s.

To circumvent the intractability, the VI method aims to optimize a tractable lower bound of the
log-likelihood. To do that, we introduce a family of approximate distributions Q = {qγ | γ ∈ Γ}.
(Each distribution q is parameterized by γ.) Observe that for any fixed x,

ln p(x) =

∫
q(z|x) ln p(x) dz

=

∫
q(z|x) ln

p(x)q(z|x)p(z|x)

p(z|x)q(z|x)
dz

=

∫
q(z|x) ln

q(z|x)

p(z|x)
dz +

∫
q(z|x) ln

p(x, z)

q(z|x)
dz

= KL (q(z|x)||p(z|x))︸ ︷︷ ︸
≥0

+

∫
q(z|x) ln

p(x, z)

q(z|x)
dz︸ ︷︷ ︸

ELBO

As indicated above, the KL term is always non-negative, and so the second term is a lower bound
for ln p(x). The second term is hence called the evidence lower bound (ELBO). For any two
distributions pθ ∈ P and qγ ∈ Q, let us write

ELBO(x; θ, γ) =

∫
q(z|x) ln

pθ(x, z)

qγ(z|x)
dz

The VI method then uses gradient-based method to optimize the objective

max
θ

∑
xi∈S

max
γi

Eqγi (z|xi)

[
log

pθ(xi, z)

qγi(z|xi)

]
. (1)

In each iteration, we do two-step update:

1. First, for each example i: update γi

γi ← γi + ηγ∇̃γELBO(xi; θ, γ
(i)), (2)

2. Update θ

θ ← θ + ηθ∇̃θ

∑
i

ELBO(x(i); θ, γ(i)), (3)

where ∇̃ denote unbiased estimate for the gradients and ηγ and ηθ are the learning rates.

3

Reparameterization trick. To estimate the gradient∇ELBO(x; θ, γ) = ∇γEqγ(z|x)

[
log pθ(x,z)

qγ(z|x)

]
,

we will leverage a reparameterization trick. Let us introduce a fixed, auxiliary distribution ν(ε)
and a differentiable function T (ε; γ) such that sampling from qγ(z|x) is identical to

ε ∼ ν z ∼ T (ε; γ)

Then the gradient computation can be rewritten as:

∇γEqγ(z|x)

[
log

pθ(x, z)

qγ(z|x)

]
= Eν

[
∇γ log

pθ(x, T (ε; γ))

qγ(T (ε; γ))

]
(4)

We can then approximate the right hand side of (4) by drawing ε1, . . . , εm from ν, and then
compute the average gradient:

1

m

m∑
i=1

[
∇γ log

pθ(x, T (εi; γ))

qγ(T (εi; γ))

]
This is also called Monte Carlo sampling. Note that the gradient∇θELBO(x; θ, γ) can be estimated
with Monte Carlo sampling, but without the reparametrization trick: draw z1, . . . , zm i.i.d. from
p(z|x), and the compute the average gradient

1

m

m∑
i=1

[
∇θ log

pθ(x, zi))

qγ(zi|x)

]
where Σ1/2 is the Cholesky decomposition of Σ.

Instantiation via neural nets. Now we will obtain VAE from this framework of VI by instanti-
ating the distributions p and q through neural networks and Gaussian distributions. First, we will
have the latent distribution as

pθ(z) = N (0, I)

Note that this “prior” distribution doesn’t depend on θ. The conditional distribution pθ(x|z) corre-
sponds to the decoder. A typical choice is a Gaussian distribution

pθ(x|z) = N (µθ(z),Σθ(z))

where the mean and covariance parameters µθ(z),Σθ(z) are given by a neural network. If Σθ(z) =
σ2I , then ELBO becomes the VAE objective with squared error as the reconstruction error, that is

`(xi, x̂i) = ‖xi − x̂i‖22
For the approximate distribution q, we will have

qγ(z|xi) = N (µ(xi),Σ(xi)),

where the parameter γi = (µ(xi),Σ(xi) are mean and covariance parameters given by the encoder
neural network. To apply the reparameterization trick, we will have ν = N (0, I) and T (ε; γ) =
µ + Σ1/2ε, where Σ1/2 is the Cholesky decomposition of Σ. For Σ = σ2I , we will simply have
Σ1/2 = σI .

4

