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We will now introduce a different type of generative networks that do not involve evaluating
the likelihood of the data under our model pθ. This framework is called generative adversarial
networks (GAN). There are two components in a GAN: (1) a generator and (2) a discriminator.
The generator Gθ is a neural network that takes a latent vector z and deterministically maps it
to sample x = Gθ(z), and the discriminator Dγ is a (probabilistic) classifier that aims to distin-
guish samples from the real dataset and the generator such that D(x) denotes the discriminator’s
prediction probability of x being real.

GAN Objective. The generator and discriminator play a two player minimax game, where the
generator tries to mimimc the underlying data distribution (pdata = pG) and the discriminator tries
to distinguish the samples from pdata versus samples from pG. Intuitively, the generator tries to fool
the discriminator to the best of its ability by generating samples that look indisginguishable from
pdata. Formally, the GAN objective can be written as:

min
θ

max
γ

V (Gθ, Dγ) = Ex∼pdata [lnDγ(x)] + Ez∼pz [ln(1−Dγ(Gθ(z)))]

In this expression, the discriminator is maximizing this function V with respect to its parame-
ters γ, where given a fixed generatorGθ it is performing binary classification to distinguish samples
from pG versus samples from pdata. In the homework, you will show that in this setup, the optimal
discriminator is:

D∗
G(x) =

pdata(x)

pdata(x) + pG(x)

where pG(x) =
∫
pz(z)1[G(z) = x)] dz. On the other hand, the generator minimizes this objective

assuming the discriminator Dγ will best respond. And after performing some algebra, plugging in
the optimal discriminator into the overall objective V (Gθ, D ∗G (x)) gives us:

2 JSD[pdata, pG]− ln 4

where JSD term is the Jenson-Shannon Divergence:

JSD[p, q] =
1

2

(
KL
[
p,
p+ q

2

]
+ KL

[
q,
p+ q

2

])
JSD is a symmetric form of the KL divergence such that it satisfies all properties of the KL:
JSD(p, q) = 0 if and only if p = q and JSD(p, q) ≥ 0 for all p, q. In addition, we get an upgrade to
a symmetric form: JSD[p, q] = JSD[q, p]. In this case, the optimal generator for the GAN objective
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becomces pG = pdata, and the optimal objective value that we can achieve with optimal generators
and discriminatorsG∗(·) andD∗

G∗(x) is− ln 4. Another simple way to see this: when the generator
is indeed generating samples from the distribution pdata, then the optimal discriminator cannot do
better than predicting D(x) = 1/2 on every example, which gives the objective value of − ln 4.

GAN Training. The training algorithm performs alternating optimization. Over iterations:

1. Sample minibatch of size m from the data set: x(1), . . . , x(m) ∼ D

2. Sample minibatch of size m of noise: z(1), . . . , z(m) ∼ pz

3. Take a gradient descent step on the generator parameters θ with gradient estimate:

OθV (Gθ, Dγ) =
1

m
Oθ

m∑
i=1

ln
(
1−Dγ(Gθ(z

(i)))
)

4. Take a gradient ascent step on the discriminator parameters γ with gradient estimate:

OγV (Gθ, Dγ) =
1

m
Oγ

m∑
i=1

[
lnDγ(x

(i)) + ln(1−Dγ(Gθ(z
(i))))

]
Wasserstein GAN. In general, we can consider the following more general GAN objective:

min
G

max
D

E
x∼pX

[f(D(x))] + E
z∼pz

[f(1−D(G(z)))] (1)

where f : [0, 1]→ R is a monotone function. For example, in standard GAN, f(a) = ln a. Another
popular variant of GAN is Wasserstein GAN, where f(a) = a. While the standard GAN objective
leads to the distance of Jensen-Shannon Divergence, Wasserstein GAN leads to the earth-mover
distance, which can be interpreted as how much mass we have to shift to convert one distribution
into another.
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