CSCI 5525 Machine Learning Fall 2019

Lecture 25: Online Learning (Part 1)

April 2020
Lecturer: Steven Wu

We give two online learning algorithms with mistake bounds.

1 Halving Algorithm

Consider the following online prediction problem with N experts:
For rounds $t=1, \ldots, T$:

- Experts predict $f_{1, t}, \ldots, f_{N, t} \in\{0,1\}$
- Learner makes prediction \hat{y}_{t} (based on the experts' predictions)
- Observe the true label y_{t} and incurs loss $\mathbf{1}\left[y_{t} \neq \hat{y}_{t}\right]$

Here is the simple halving algorithm for solving the online prediction problem:

- Initialization before round 1: $S_{1}=\{1, \ldots, N\}$.
- At each round t :
- Predict \hat{y}_{t} as the majority vote of S_{t}
- Update $S_{t+1}=\left\{i \in S_{t} \mid f_{i, t}=y_{t}\right\}$, that is the set of experts who still have perfect predictios so far.p

Under the assumption that there is a perfect expert i^{*} such that $f_{i^{*}, t}=y_{t}$, we can show that the halving algorithm makes bounded number of mistakes, regardless of how large T is.

Theorem 1.1. The number of mistakes of the halving algorithm is bounded by $\log _{2} N$.

2 Perceptron algorithm

Now let's consider an online linear prediction problem. The perceptron algorithm initialize \mathbf{w}_{1} as the all-zero vector in \mathbb{R}^{d}, and proceeds over rounds $t=1, \ldots, T$:

- observes feature vector $x_{t} \in \mathbb{R}^{d}$,
- makes prediction $\hat{y}_{t}=\mathbf{1}\left[\boldsymbol{w}_{t}^{\top} x_{t}>0\right]$,
- observes label y_{t}
- update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^{t}+\mathbf{1}\left[y_{i} \mathbf{w}^{\boldsymbol{\top}} x_{i} \leq 0\right] y_{i} x_{i}$

Thus, in each round t, the perceptron algorithm either makes the correct prediction or moves update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^{t}+y_{i} x_{i}$.

Under the assumption that there is a perfect linear classifier with a margin, we can show that the perceptron algorithm will make bounded number of mistakes, regardless of how large T is.

Theorem 2.1. Assume that there exists some $\mathbf{w}^{*} \in \mathbb{R}^{d}$ such that for all t,

$$
y_{t} x_{t}^{\top} \mathbf{w}^{*} \geq \gamma
$$

and that $\left\|x_{t}\right\|_{2} \leq L$. Then the total number of mistakes made by the algorithm is bounded by

$$
\frac{\left\|\mathbf{w}^{*}\right\|_{2}^{2} L^{2}}{\gamma^{2}}
$$

Proof idea. Let B be the number of mistakes. To bound B, one can show that $\mathbf{w}_{T}^{\top} \mathbf{w}^{*} \geq B \gamma$ and also $\left\|\mathbf{w}_{T}\right\| \leq L \sqrt{B}$. By Cauchy-Schwarz inequality, $\mathbf{w}_{T}^{\top} \mathbf{w}^{*} \leq\left\|\mathbf{w}_{T}\right\|_{2}\left\|\mathbf{w}^{*}\right\|_{2}$, and so

$$
B \gamma \leq \mathbf{w}_{T}^{\top} \mathbf{w}^{*} \leq L \sqrt{B}\left\|\mathbf{w}^{*}\right\|_{2}
$$

which leads to the stated bound.

