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“Differential privacy? Isn’t it just adding noise?”



How to add smart noise to guarantee privacy 
without sacrificing utility in private data analysis?

How to add smart noise to achieve stability and 
gain more utility in data analysis?!



Adaptive Data 
AnalysisDifferential Privacy

Certified Robustness for 
Adversarial Examples

Algorithmic
Mechanism Design

Technical Connections 

 4



Outline

• Simple Introduction to Differential Privacy

• Mechanism Design

• Adaptive Data Analysis
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Statistical Database

• X: the set of all possible records (e.g. {0, 1}d)

• D � Xn: a collection of n rows ("one row per person")

Sensitive Database
(e.g. medical records)

Private
Algorithm

Output
Information
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Privacy as a Stability Notion

Stability: the data analyst learns (approximately) same information 
if any row is replaced by another person of the population

Database
Data Analyst

Algorithm

Alice

Bob
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Differential Privacy 
[DN03, DMNS06]

D1

D2

D3

…
Dn

D1

D2

D’3
…
Dn

D = D’ = 

D and D’ are neighbors if they differ by at most one row

Definition: A (randomized) algorithm A is ε-differentially private
if for all neighbors D, D’ and every S ⊆ Range(A)

A private algorithm needs to have close output 
distributions on any pair of neighbors

Pr[A(D) ∈ S] ≤ eε Pr[A(D’) ∈ S]
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Definition: A (randomized) algorithm A is (ε, δ)-differentially private
if for all neighbors D, D’ and every S ⊆ Range(A)

Pr[A(D) ∈ S] ≤ eε Pr[A(D’) ∈ S]  + δ

One Interpretation of the Definition:

If a bad event is very unlikely when I’m not in the database (D),
then it is still very unlikely when I am in the database (D’).
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Differential Privacy 
[DN03, DMNS06]



Nice Properties of Differential Privacy

• Privacy loss measure (ε)

• Bounds the cumulative privacy losses across different 
computations and databases

• Resilience to arbitrary post-processing

• Adversary’s background knowledge is irrelevant

• Compositional reasoning

• Programmability: construct complicated private 
analyses from simple private building blocks
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Other Formulations

• Renyi Differential Privacy [Mir17]

• (Zero)-Concentrated Differential Privacy [DR16, BS16]

• Truncated-Concentrated Differential Privacy [BDRS18]



Privacy as a Tool for Mechanism Design
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Warmup: Revenue Maximization

• Could set the price of apples at $1.00 for profit: $4.00
• Could set the price of apples at $4.01 for profit $4.01

n buyers
w/ private value

$1.00

$1.00

$1.00

$4.01

• Best price: $4.01, 2nd best price: $1.00 
• Profit if you set the price at $4.02: $0 
• Profit if you set the price at $1.01: $1.01



Incentivizing Truth-telling

Definition.  A mechanism   is  -approximately dominant strategy truthful 
if for any   with private value   , any reported value   from    

and any reported values from everyone else  

 

M α
i vi xi i

x−i

𝔼M[ui(M(vi, x−i))] ≥ 𝔼M[ui(M(xi, x−i))] − α

• Each agent   has a utility function  

• For example,  , if   is the selected price

i ui : ℛ → [−B, B]

ui(r) = 1[x ≥ r](v − r) r

• A mechanism    for some abstract range  

•   = reported value;   = {$1.00, $1.01, $1.02, $1.03, …}

M : 𝒳n → ℛ ℛ

𝒳 ℛ

No matter what other people do, 
truthful report is (almost) the best



Privacy  Truthfulness⇒

Theorem [MT07]. Any  -differentially private mechanism   is                    
 -approximately dominant strategy truthful.

ϵ M
ϵB

• Each agent   has a utility function  i ui : ℛ → [−B, B]

• A mechanism    for some abstract range  M : 𝒳n → ℛ ℛ

Proof idea. 

Utilitarian view of the DP definition: for all utility function  

 

ui

𝔼M[ui(M(xi, x−i))] ≥ exp(ϵ) 𝔼M[ui(M(x′�i, x−i))]



The Exponential Mechanism

• A mechanism    for some abstract range  

•   = reported value;   = {$1.00, $1.01, $1.02, $1.03, …}

• Paired with a quality score  . 

• 𝑞(𝐷, 𝑟) represents how good output 𝑟 is for input data 𝐷, 
(e.g., revenue)

• Sensitivity  : for all neighboring   and  ,   

 

M : 𝒳n → ℛ ℛ

𝒳 ℛ

q : 𝒳n × ℛ → ℝ

Δq D D′� r ∈ ℛ

|q(D, r) − q(D′�, r) | ≤ Δq

[MT07]



The Exponential Mechanism

• Input: data set  , range  , quality score  , privacy parameter  

• Select a random outcome   with probability proportional to

                                

D ℛ q ϵ

r

ℙ[r] ∝ exp ( ϵ q(D, r)
2Δq )

[MT 07]

Idea: Make high quality outputs exponentially more 
likely at a rate that depends on the sensitivity of 

the quality  and the privacy parameter Δq ϵ



The Exponential Mechanism

• Input: data set  , range  , quality score  , privacy parameter  

• Select a random outcome   with probability proportional to

                                

D ℛ q ϵ

r

ℙ[r] ∝ exp ( ϵ q(D, r)
2Δq )

[MT 07]

Theorem [MT07]. The exponential mechanism is  -differentially private, 
 -approximately DS truthful and with probability   

the selected outcome   satisfies

             

ϵ
O(ϵ) 1 − β,

̂r

q(D, ̂r) ≥ OPT −
2Δq log( |ℛ | /β)

ϵ



Limitations
• Everything is an approximate dominant strategy, not just 

truth telling. 
• Sometimes it is easy to find a beneficial deviation
• [NST12, HK12] obtain exact truthfulness

• Many interesting problems cannot be solved under 
the standard constraint of differential privacy

•

Joint Differential Privacy as a Tool



Allocation Problem

n buyers
k types of goods
s copies of each
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Each buyer   has private value   for each good  i vi( j) = vij j



• Design a mechanism   that computes a feasible allocation 
  and a set of item prices   such that 

• The allocation maximizes social welfare

 

•  -approximately dominant strategy truthful

 

for any   and  

M
x1, …, xn p1, …, pk

SW =
n

∑
i=1

vi(xi)

α

𝔼M(V′�)[vi(xi) − p(xi)] ≤ 𝔼M(V)[vi(xi) − p(xi)] + α

V = (v1, …, vi, …, vn) V′� = (v1, …, v′�i, …, vn)

Mechanism Design Goal



• Output of the algorithm: assignment of items to the buyers

• Differential privacy requires the output to be insensitive to 
change of any buyer’s private valuation

Impossible to solve under standard differential privacy

Still the same ?

• But to achieve high welfare, we will have to give the buyers 
what they want

 23

Using Privacy as a Hammer?



Structure of the Problem

• Both the input and output are partitioned amongst n buyers

• The next best thing: protect a buyer’s privacy from all other buyers

n buyers’
private values Algorithm

n buyers’
assigned

items
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Joint Differential Privacy (JDP)
[KPRU14]

Definition: Two inputs D, D’ are i-neighbors if they only differ by i’s 
input.  An algorithm A: X →Rn satisfies (ε, δ)-joint differential privacy
if for all neighbors D, D’ and every S ⊆ Rn-1

Pr[A(D)-i ∈ S] ≤ eε Pr[A(D’)-i ∈ S]  + δ

Algorithm

buyer 1 = 

insensitive to
buyer 1’s data

Even if all the other buyers collude, they will 
not learn about buyer 1’s private values!
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How to solve the allocation problem under  
joint differential privacy? 

Key idea:

use prices under standard differential privacy as 
a coordination device among the buyers
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[HHRRW14, HHRW16]



Price Coordination under JDP

Demand the favorite item 
given the prices

Price (Dual)

Iteratively updates prices 
Buyers (Primal)

best response
(pt
1, p

t
2, . . . , p

t
k)

Buyers best respond  
to prices separately

The aggregate demand
gives gradient feedback

• Perturb the gradient (for privacy)
• Gradient descent update on the prices
• Raise prices on over-demand goods
• lower prices on under-demand goods

(pt+1
1 , . . . , pt+1

k )

Final Solution (average allocation):
Let each buyer uniformly 

randomly sampled an item from 
the sequence of best responses
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“Billboard”



Approximate Truthfulness

Incentivize truth-telling with privacy

• Final prices are computed under differential privacy  
(insensitive to any single buyer’s misreporting)

• Each buyer is getting the (approximately) most preferred 
assignment given the final prices

• Truthfully reporting their data is an approximate dominant 
strategy for all buyers
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Extension to Combinatorial Auctions

Allocating bundles of goods

• [HHRRW14] Gross substitutes valuations

• [HHRW16]  -demand valuations  
(general valuation over bundles of size at most  )

d
d

Compared to VCG mechanism

• JDP gives item prices; VCG charges payments on bundles

• JDP approximate envy-free; VCG not envy-free



Joint Differential Privacy as a Hammer

Solves large-market mechanism design problems for:

• [KMRW15] Many-to-one stable matching

• First approximate student-truthful mechanism for approximate 
school-optimal stable matchings without distributional assumptions

• [RR14, RRUW15] Coordinate traffic routing (with tolls)

• [CKRW15] Equilibrium selection in anonymous games
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Meta-Theorem [KPRU14]

     Computing equilibria subject to joint differential privacy 
robustly incentivizes truth telling.
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Adaptive Data Analysis

Method

Sample

Conclusions



Basic Framework

• A data universe X

• A distribution P over X

• A dataset D consisting of n points x in X drawn i.i.d. from distribution P

P
D

n i.i.d. draws

 33
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Adaptivity in Learning

A diligent
data scientist

• Suppose we want to train a model to classify dogs and 
cats pictures…

model 1
error 0.4 

model 2
error 0.3 

…

D

Super refined model M
with error 0.0001 on D
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Data set drawn
i.i.d. from P



Choosing a Formalism:
Statistical Queries

• A statistical query is defined by a predicate

 

• The value statistical query is

 

ϕ : X → [0,1]

ϕ(P) = 𝔼x∼P[ϕ(x)]



Generality

• Means, variances, correlations, etc.

• Risk of a hypothesis: 

 

• Gradient of risk of a hypothesis:

  

• Almost all of PAC learning algorithms

R(h) = 𝔼(x,y)∼P[ℓ(h(x), y)]

∇R(h) = 𝔼(x,y)∼P[∇ℓ(h(x), y)]



Adaptive Data Analysis

Data scientist

 ϕ1

 ϕ2

D….

 ϕk

P
 a1

.…

a2

ak

  i.i.d. drawsn

A

Goal: Design   such that for all  
 

A j
|aj − ϕj(P) | ≤ α

Challenge: 

•   does not observe  

• Each   depends arbitrarily on  

A P
ϕj q1, a1, …, ϕj−1, aj−1



Non-Adaptive Baseline

A well-behaved
data scientist

• Suppose the queries are chosen up front.
 ϕ1

 ϕ2

D

….

 ϕk

P

 a1

…
a2

ak

  i.i.d. drawsn

A

The “empirical average” mechanism:  

 

AD(ϕ) = ϕ(D) =
1
n ∑

x∈D

ϕ(x)

max
j

|AD(ϕj) − ϕj(P) | ≲
log k

n



Adaptive Baseline

Data scientist

 ϕ1

 ϕ2

D….

 ϕk

P
 a1

.…

a2

ak

  i.i.d. drawsn

A

The “empirical average” mechanism:  

 

AD(ϕ) = ϕ(D) =
1
n ∑

x∈D

ϕ(x)

max
j

|AD(ϕj) − ϕj(P) | ≲
k

n



Improvement with Differential Privacy

Data scientist

 ϕ1

 ϕ2

D….

 ϕk

P
 a1

.…

a2

ak

  i.i.d. drawsn

A

The “noisy empirical” mechanism:  

 

AD(ϕ) = ϕ(D) + N(0,σ2)

max
j

|AD(ϕj) − ϕj(P) | ≲
k1/4

n

Adding noise reduces the error!



Gaussian Mechanism

Theorem [DFHPRR15, BNSSSU16, JLNRSS20]

The Gaussian mechanism can answer   adaptive SQs with error

                     

k

α = Õ ( k1/4

n )

Can extend to other types of queries

• Lipchitz queries:   

• Minimization queries:  

• Bounded variance queries [FS17,18]

|q(D) − q(D′�) | ≤ 1/n
q(D) = arg min

θ∈Θ
ℓ(θ; D)

 
k

nσ
+ σ



Proof sketch 
[JLNRSS20]

• Data set  

•   : transcript between algorithm and analyst 
(sequence of query-answer pairs:  )

•   : “posterior” distribution conditioned on  

• Resample a new data set  

D ∼ Pn

π
ϕ1, a1, …, ϕk, ak

Qπ = (Pn) ∣ π π

S ∼ Qπ

Resampling Lemma

  and   are identically distributed(D, π) (S, π)



•   : transcript  

•   : “posterior” distribution conditioned on  

• Resample a new data set  

π (ϕ1, a1, …, ϕk, ak)

Qπ = (Pn) ∣ π π

S ∼ Qπ

Resampling Lemma

  and   are identically distributed(D, π) (S, π)

•   promises sample accuracy w.h.p.  is small

• By Resampling Lemma,  is small  
where  

A |ai − ϕi(D) |

|ai − ϕi(Qπ) |

ϕi(Qπ) = 𝔼S∼Qπ
[ϕi(S)]



Now we know is small  
where  

|ai − ϕi(Qπ) |

ϕi(Qπ) = 𝔼S∼Qπ
[ϕi(S)]

If the transcript   satisfies  -differential privacy, then for any  

 

π ϵ ϕ

ϕ(Qπ) ≤ eϵ ϕ(P)

⇒ |ϕ(Qπ) − ϕ(P) | ≤ eϵ − 1 ≈ ϵ



Stronger Bounds

• Dependence on  : data dimensionality
• Unavoidable dependence [HU14, SU15]

• Uses a more powerful algorithm, namely PrivateMW [HR10]
• Computational issue: exponential in  

d

d

Theorem [DFHPRR15, BNSSSU16, JLNRSS20]

There exists a mechanism can answer   adaptive SQs with error

 

k

α = Õ min { k1/4

n
,

d1/6 log k
n1/3 }



Other Applications

• Algorithmic application: Improve sample complexity

• [HKRR18]: Enforcing Multi-calibration as fairness criterion

• Prove concentration inequalities [SU17,NS17]
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Connection with Certified Robustness

[Goodfellow et al. 15]



Adversarial Example

Figure from [Mądry et al.18]



Formulation

• (Hard) classifier  

• Soft classifier  

• Perturbation set   (e.g.,   ball of radius  )

f : ℝd → Y

g : ℝd → Δ(Y )

S ℓp r

A classifier   is robust to perturbations in   at example   if

   for all   

g S x ∈ ℝd

arg max
c∈Y

g(x)c = arg max
c∈Y

g(x + δ)c δ ∈ S

For this talk,   . 

Would like to tolerate large  

S = B2(r)
r



Two Approaches

• Empirical defenses

• Adversarial training and variants

• Performs well in practice, but no provable guarantees

• Certified robustness

• Provable guarantees, but tend to perform worse in practice



PixelDP

• Perturb each example   with Gaussian noise  

• Evaluate the prediction with the base classifier  

• The prediction is differentially private in the pixels

x η ∼ N(0,σ2I)
f(x + η)

[Lecuyer et al. 2018]

For any   and   such that   and any  

  

x x′� ∥x − x′�∥2 ≤ r E ⊆ Y
ℙ[ f(x + η) ∈ E] ≤ eϵ ℙ[ f(x′� + η) ∈ E] + δ

Even if  the distributions satisfy

 

f(x) ≠ f(x′�),
f(x + η) ≈ f(x′� + η)



Randomized Smoothing

Certified Robustness [Lecuyer et al. 18]

For any example  , if there exists a class   such that

         

Then   is robust at   for any   perturbation of size

                   

x ∈ ℝd c

g(x)c > e2ϵ max
y≠c

g(x)y + (1 + eϵ) δ

g x ℓ2

r ≤
σϵ

2 log(1.25/δ)

Smoothed Classifier

  g(x)c = ℙη∼N(0,σ2I)[ f(x + η) = c]



Improved Bounds

Theorem [Cohen et al. 19]

Fix any example  . Let   be the smoothed classifier of  . Let

 

 

Then   is robust at   for any   perturbation of size

      

  denotes the CDF of the standard Gaussian.

x ∈ ℝd g f

a = arg max
c∈Y

g(x)c, pa = g(x)a

b = arg max
c∈Y,c≠a

g(x)c, pb = g(x)b

g x ℓ2

r =
σ
2 (Φ−1(pa) − Φ−1(pb))

Φ

Subsequently improved by [Li et al. 18] and [Cohen et al.19]

Proof using Neyman-Pearson lemma [NP33]



How about training?

[Salman et al.19]

• Beautiful idea of combining adversarial training with 
randomized smoothing

• Achieved SOTA certified accuracy for   perturbationℓ2
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What’s next?!



Differential Privacy Techniques 
Beyond Differential Privacy

Thanks Jerry Li, Aaron Roth and Jon Ullman 
for their help with my slides!
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